Índice
Literatura académica sobre el tema "Synergistic regularization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Synergistic regularization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Synergistic regularization"
Cueva, Evelyn, Alexander Meaney, Samuli Siltanen y Matthias J. Ehrhardt. "Synergistic multi-spectral CT reconstruction with directional total variation". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2204 (5 de julio de 2021): 20200198. http://dx.doi.org/10.1098/rsta.2020.0198.
Texto completoMehranian, Abolfazl, Martin A. Belzunce, Claudia Prieto, Alexander Hammers y Andrew J. Reader. "Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization". IEEE Transactions on Medical Imaging 37, n.º 1 (enero de 2018): 20–34. http://dx.doi.org/10.1109/tmi.2017.2691044.
Texto completoPerelli, Alessandro y Martin S. Andersen. "Regularization by denoising sub-sampled Newton method for spectral CT multi-material decomposition". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2200 (10 de mayo de 2021): 20200191. http://dx.doi.org/10.1098/rsta.2020.0191.
Texto completoJørgensen, J. S., E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans et al. "Core Imaging Library - Part I: a versatile Python framework for tomographic imaging". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2204 (5 de julio de 2021): 20200192. http://dx.doi.org/10.1098/rsta.2020.0192.
Texto completoBahadur, Rabya, Saeed ur Rehman, Ghulam Rasool y Muhammad AU Khan. "Synergy Estimation Method for Simultaneous Activation of Multiple DOFs Using Surface EMG Signals". NUST Journal of Engineering Sciences 14, n.º 2 (31 de enero de 2022): 66–73. http://dx.doi.org/10.24949/njes.v14i2.661.
Texto completoZhong, Lihua, Tong Ye, Yuyao Yang, Feng Pan, Lei Feng, Shuzhe Qi y Yuping Huang. "Deep Reinforcement Learning-Based Joint Low-Carbon Optimization for User-Side Shared Energy Storage–Distribution Networks". Processes 12, n.º 9 (23 de agosto de 2024): 1791. http://dx.doi.org/10.3390/pr12091791.
Texto completoDu, Lehui, Baolin Qu, Fang Liu, Na Ma, Shouping Xu, Wei Yu, Xiangkun Dai y Xiang Huang. "Precise prediction of the radiation pneumonitis with RPI: An explorative preliminary mathematical model using genotype information." Journal of Clinical Oncology 37, n.º 15_suppl (20 de mayo de 2019): e14569-e14569. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14569.
Texto completoDi Sciacca, G., L. Di Sieno, A. Farina, P. Lanka, E. Venturini, P. Panizza, A. Dalla Mora, A. Pifferi, P. Taroni y S. R. Arridge. "Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2204 (5 de julio de 2021): 20200195. http://dx.doi.org/10.1098/rsta.2020.0195.
Texto completoLu, Yifan, Ziqi Zhang, Chunfeng Yuan, Peng Li, Yan Wang, Bing Li y Weiming Hu. "Set Prediction Guided by Semantic Concepts for Diverse Video Captioning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 4 (24 de marzo de 2024): 3909–17. http://dx.doi.org/10.1609/aaai.v38i4.28183.
Texto completoAnacleto, Adilson, Karina Beatriz dos Santos Ferreira da Rocha, Raíssa Leal Calliari, Maike dos Santos y Sandro Deretti. "Production Arrangement of Cachaça: Comparative Study Between Morretes in the Paraná Coast and Luiz Alves in Itajaí Valley - Santa Catarina". Revista de Gestão Social e Ambiental 18, n.º 2 (26 de junio de 2024): e07510. http://dx.doi.org/10.24857/rgsa.v18n2-158.
Texto completoTesis sobre el tema "Synergistic regularization"
Wang, Zhihan. "Reconstruction des images médicales de tomodensitométrie spectrale par apprentissage profond". Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0124.
Texto completoComputed tomography (CT), a cornerstone of diagnostic imaging, focuses on two contemporary topics: radiation dose reduction and multi-energy imaging, which are inherently interconnected. As an emerging advancement, spectral CT can capture data across a range of X-ray energies for bettermaterial differentiation, reducing the need for repeat scans and thereby lowering overall radiationexposure. However, the reduced photon count in each energy bin makes traditional reconstruction methods susceptible to noise. Therefore, deep learning (DL) techniques, which have shown great promise in medical imaging, are being considered. This thesis introduces a novel regularizationterm that incorporates convolutional neural networks (CNNs) to connect energy bins to a latent variable, leveraging all binned data for synergistic reconstruction. As a proof-of concept, we propose Uconnect and its variant MHUconnect, employing U-Nets and the multi-head U-Net, respectively, as the CNNs, with images at a specific energy bin serving as the latent variable for supervised learning.The two methods are validated to outperform several existing approaches in reconstruction and denoising tasks