Literatura académica sobre el tema "Synchronous thermal instability"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Synchronous thermal instability".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Synchronous thermal instability"
Balbahadur, A. C. y R. G. Kirk. "Part II—Case Studies for a Synchronous Thermal Instability Operating in Overhung Rotors". International Journal of Rotating Machinery 10, n.º 6 (2004): 477–87. http://dx.doi.org/10.1155/s1023621x04000478.
Texto completoBalbahadur, A. C. y R. G. Kirk. "Part I—Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors". International Journal of Rotating Machinery 10, n.º 6 (2004): 469–75. http://dx.doi.org/10.1155/s1023621x04000466.
Texto completoSingh, A. Narain, W. Doorsamy y W. A. Cronje. "Thermal Instability Analysis of a Synchronous Generator Rotor using Direct Mapping". SAIEE Africa Research Journal 109, n.º 1 (marzo de 2018): 4–14. http://dx.doi.org/10.23919/saiee.2018.8531795.
Texto completoBhadauria, Beer S., Atul K. Srivastava, Nirmal C. Sacheti y Pallath Chandran. "Gravity Modulation of Thermal Instability in a Viscoelastic Fluid Saturated Anisotropic Porous Medium". Zeitschrift für Naturforschung A 67, n.º 1-2 (1 de febrero de 2012): 1–9. http://dx.doi.org/10.5560/zna.2011-0045.
Texto completoBalbahadur, A. y R. Kirk. "Part I?Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors". International Journal of Rotating Machinery 10, n.º 6 (1 de noviembre de 2004): 469–75. http://dx.doi.org/10.1080/10236210490504021.
Texto completoBalbahadur, A. y R. Kirk. "Part II?Case Studies for a Synchronous Thermal Instability Operating in Overhung Rotors". International Journal of Rotating Machinery 10, n.º 6 (1 de noviembre de 2004): 477–87. http://dx.doi.org/10.1080/10236210490504067.
Texto completoOlsson, Karl-Olof. "Some Unusual Cases of Rotor Instability". Journal of Vibration and Acoustics 125, n.º 4 (1 de octubre de 2003): 477–81. http://dx.doi.org/10.1115/1.1606692.
Texto completoYoshida, Yoshiki, Yoshifumi Sasao, Kouichi Okita, Satoshi Hasegawa, Mitsuru Shimagaki y Toshiaki Ikohagi. "Influence of Thermodynamic Effect on Synchronous Rotating Cavitation". Journal of Fluids Engineering 129, n.º 7 (10 de enero de 2007): 871–76. http://dx.doi.org/10.1115/1.2745838.
Texto completoBhadauria, B. S. "Unsteady Heating of Rayleigh-Benard Convection". Zeitschrift für Naturforschung A 59, n.º 4-5 (1 de mayo de 2004): 266–74. http://dx.doi.org/10.1515/zna-2004-4-511.
Texto completoOR, A. C. y R. E. KELLY. "The effects of thermal modulation upon the onset of Marangoni–Bénard convection". Journal of Fluid Mechanics 456 (9 de abril de 2002): 161–82. http://dx.doi.org/10.1017/s0022112001007510.
Texto completoTesis sobre el tema "Synchronous thermal instability"
Carroll, Brian R. "Synchronous Thermal Instability Evaluation of Medium Speed Turbocharger Rotor-Bearing Systems". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32886.
Texto completoMaster of Science
Zhang, Silun. "Analyse de l'effet Morton dans les turbines à vapeur". Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2260.
Texto completoIn the field of rotating machines (steam turbines, turbochargers and other turbomachines), the Morton effect designates the creation of a synchronous excitation source due to the thermal deformation of the rotor in the hydrodynamic bearings. By abuse of language, this vibratory source is often called thermal unbalance. Under the effect of this imbalance, the amplitude and the phase of the synchronous vibrations of the rotor evolve gradually over time. In most cases, the Morton effectremains stable and the effects of thermal unbalance on the vibrations are not detrimental to the operation of the machine. However, if the conditions are favorable, the dynamic behavior of the rotor becomes unstable and the instability of the synchronous vibration, in other words the Morton effect, could occur.To better understand and analyze the triggering conditions of this destructive scenario, it is necessary to simulate the Morton effect accurately. This simulation requires several physical phenomena and to couple several mathematical models. These are the model of hydrodynamic lubrication, the thermomechanical model of the rotor and the model of rotor dynamics. This multiphysics coupling is not simple because of the different time scales of the thermomechanical phenomenon and the rotor dynamics. The strategy of heat flux averaged over a rotation period makes it possible to overcome this difficulty and to reduce the calculation time. The modeling of the Morton effect is validated by a comparison between the numerical results and the experimental resultsobtained at the Pprime Institute.A method based on the influence coefficients is then used to analyze the stability of the Morton effect. The applications of this method on concrete cases make it possible to highlight the physical phenomena responsible for the unstable Morton effect
GRIFFINI, DUCCIO. "Development of Predictive Models for Synchronous Thermal Instability". Doctoral thesis, 2017. http://hdl.handle.net/2158/1081044.
Texto completoNarain, Singh Amesh. "Investigation into high-speed thermal instability testing of synchronous turbo-generator rotors". Thesis, 2017. https://hdl.handle.net/10539/24190.
Texto completoThe research presented in this thesis conclusively shows that the most effective method to perform synchronous turbo-generator rotor Thermal Instability Testing is by utilising the current injection method of condition assessment. Analysis of the experiences of a local utility for well over a decade has uncovered a high number of rotors failing thermal instability testing in recent years. This trend has brought the current testing methodology into question. Two different assessment modes of testing have been found to be utilised internationally without preference, namely, current injection and friction/windage. By determining the method that is best suited to detect a thermally sensitive rotor a service provider can benefit by improved rotor reliability as well as cost saving. The evaluation is accomplished by utilising a scaled down experimental setup based on the model of a local testing facility as well as a 600 MW turbo-generator rotor. A direct thermal mapping technique has been devised utilising infrared thermography to capture the thermal distribution of the rotor surface under different test conditions. The results obtained have shown that the methods differ substantially with the friction method exhibiting a uniform surface distribution and the current-injection method exhibiting areas of higher temperature concentration around the rotor pole faces. However, weaknesses do exist in present-day testing techniques in the form of inaccurate temperature measurements during testing as well as little consideration given to external factors such as the interaction between the slip-ring and brush-gear that have the potential to influence test outcomes. A presented augmented method of performing thermal sensitivity testing taking advantage of infrared thermography is found to improve testing accuracy and aid in fault detection and location. Current thermal instability testing coupled with the direct thermal mapping method has been demonstrated to be the most effective means for performing rotor thermal sensitivity testing.
MT2018
Actas de conferencias sobre el tema "Synchronous thermal instability"
Kirk, R. Gordon y Zenglin Guo. "Design Tool for Prediction of Thermal Synchronous Instability". En ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12966.
Texto completoShin, Dongil, Alan B. Palazzolo y Xiaomeng Tong. "Squeeze Film Damper Suppression of Thermal Bow: Morton Effect Instability". En ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14825.
Texto completoSingh, A. Narain, W. A. Cronje y W. Doorsamy. "Investigation of thermal instability testing on synchronous generator rotors using an experimental direct mapping method". En 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). IEEE, 2017. http://dx.doi.org/10.1109/isie.2017.8001267.
Texto completoFaulkner, H. B., W. F. Strong y R. G. Kirk. "Thermally Induced Synchronous Instability of a Radial Inflow Overhung Turbine: Part II". En ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4174.
Texto completoFaulkner, H. B., W. F. Strong y R. G. Kirk. "Thermally Induced Synchronous Instability of a Radial Inflow Overhung Turbine: Part I". En ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4063.
Texto completoGuo, Zenglin y Gordon Kirk. "Morton Effect Induced Synchronous Instability in Mid-Span Rotor-Bearing Systems: Part 1—Mechanism Study". En ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28341.
Texto completoOlsson, Karl-Olof. "Some Unusual Cases of Rotor Instability". En ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21375.
Texto completoBerot, François y Hervé Dourlens. "On Instability of Overhung Centrifugal Compressors". En ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-202.
Texto completoKirk, Gordon. "Rotating Machinery Long Coupling Spacer Related Vibration". En ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46718.
Texto completoGuo, Zenglin y Gordon Kirk. "Morton Effect Induced Synchronous Instability in Mid-Span Rotor-Bearing Systems: Part 2—Models and Simulations". En ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28342.
Texto completo