Literatura académica sobre el tema "Synaptic turnover"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Synaptic turnover".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Synaptic turnover"
Zimmermann, H., W. Volknandt, B. Wittich y A. Hausinger. "Synaptic vesicle life cycle and synaptic turnover". Journal of Physiology-Paris 87, n.º 3 (enero de 1993): 159–70. http://dx.doi.org/10.1016/0928-4257(93)90027-q.
Texto completoJones, Rachel. "Kinetics of Synaptic Protein Turnover Regulate Synaptic Size". PLoS Biology 4, n.º 11 (7 de noviembre de 2006): e404. http://dx.doi.org/10.1371/journal.pbio.0040404.
Texto completoNabavi, Melinda y P. Robin Hiesinger. "Turnover of synaptic adhesion molecules". Molecular and Cellular Neuroscience 124 (marzo de 2023): 103816. http://dx.doi.org/10.1016/j.mcn.2023.103816.
Texto completoAlvarez-Castelao, Beatriz y Erin M. Schuman. "The Regulation of Synaptic Protein Turnover". Journal of Biological Chemistry 290, n.º 48 (9 de octubre de 2015): 28623–30. http://dx.doi.org/10.1074/jbc.r115.657130.
Texto completoMurphy, T. H., D. D. Wright y J. M. Baraban. "Phosphoinositide Turnover Associated with Synaptic Transmission". Journal of Neurochemistry 59, n.º 6 (5 de octubre de 2006): 2336–39. http://dx.doi.org/10.1111/j.1471-4159.1992.tb10130.x.
Texto completoSchaefers, Andrea T. U., Keren Grafen, Gertraud Teuchert-Noodt y York Winter. "Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running". Neural Plasticity 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/870573.
Texto completoTao-Cheng, J. H., A. Dosemeci, P. E. Gallant, S. Miller, J. A. Galbraith, C. A. Winters, R. Azzam y T. S. Reese. "Rapid turnover of spinules at synaptic terminals". Neuroscience 160, n.º 1 (abril de 2009): 42–50. http://dx.doi.org/10.1016/j.neuroscience.2009.02.031.
Texto completoNath, Arup R., Ileea Larente, Taufik Valiante y Elise F. Stanley. "Synaptic Vesicle Turnover in Human Brain Synaptosomes". Biophysical Journal 108, n.º 2 (enero de 2015): 100a. http://dx.doi.org/10.1016/j.bpj.2014.11.575.
Texto completoCohen, Laurie D., Rina Zuchman, Oksana Sorokina, Anke Müller, Daniela C. Dieterich, J. Douglas Armstrong, Tamar Ziv y Noam E. Ziv. "Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance". PLoS ONE 8, n.º 5 (2 de mayo de 2013): e63191. http://dx.doi.org/10.1371/journal.pone.0063191.
Texto completoLin, Amy W. y Heng-Ye Man. "Ubiquitination of Neurotransmitter Receptors and Postsynaptic Scaffolding Proteins". Neural Plasticity 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/432057.
Texto completoTesis sobre el tema "Synaptic turnover"
Wall, M. J., D. R. Collins, S. L. Chery, Z. D. Allen, E. D. Pastuzyn, A. J. George, V. D. Nikolova et al. "The temporal dynamics of Arc expression regulate cognitive flexibility". 2018. http://hdl.handle.net/10454/16201.
Texto completoNeuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasomedependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition.
Open access funded by Biotechnology and Biological Sciences Research Council
Conti, Emilia. "In vivo optical imaging of cortical plasticity induced by rehabilitation after stroke". Doctoral thesis, 2019. http://hdl.handle.net/2158/1152568.
Texto completoCapítulos de libros sobre el tema "Synaptic turnover"
Lynch, M. A., M. P. Clements, M. L. Errington y T. V. P. Bliss. "On the Mechanism of Increased Transmitter Release in LTP: Measurements of Calcium Concentration and Phosphatidylinositol Turnover in CA3 Synaptosomes". En Synaptic Plasticity in the Hippocampus, 110–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73202-7_32.
Texto completoBenarroch, Eduardo E. "Axonal Transport". En Neuroscience for Clinicians, editado por Eduardo E. Benarroch, 144–55. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0009.
Texto completoKaur, Ramneek, Harleen Kaur, Rashi Rajput, Sachin Kumar, Rachana R. y Manisha Singh. "Neurodegenerative Disorders Progression". En Advances in Medical Diagnosis, Treatment, and Care, 129–52. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5282-6.ch006.
Texto completo