Literatura académica sobre el tema "Symmetrized bidisk"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Symmetrized bidisk".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Symmetrized bidisk"

1

Bhattacharyya, Tirthankar, and Haripada Sau. "Interpolating sequences and the Toeplitz--Corona theorem on the symmetrized bidisk." Journal of Operator Theory 87, no. 1 (2022): 435–59. http://dx.doi.org/10.7900/jot.2020oct07.2311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bhattacharyya, Tirthankar, and Haripada Sau. "Holomorphic functions on the symmetrized bidisk – Realization, interpolation and extension." Journal of Functional Analysis 274, no. 2 (2018): 504–24. http://dx.doi.org/10.1016/j.jfa.2017.09.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Agler, J., and N. J. Young. "Operators having the symmetrized bidisc as a spectral set." Proceedings of the Edinburgh Mathematical Society 43, no. 1 (2000): 195–210. http://dx.doi.org/10.1017/s0013091500020812.

Texto completo
Resumen
AbstractWe characterize those commuting pairs of operators on Hubert space that have the symmetrized bidisc as a spectral set in terms of the positivity of a hermitian operator pencil (without any assumption about the joint spectrum of the pair). Further equivalent conditions are that the pair has a normal dilation to the distinguished boundary of the symmetrized bidisc, and that the pair has the symmetrized bidisc as a complete spectral set. A consequence is that every contractive representation of the operator algebra A(Γ) of continuous functions on the symmetrized bidisc analytic in the int
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sarkar, Jaydeb. "Operator Theory on Symmetrized Bidisc." Indiana University Mathematics Journal 64, no. 3 (2015): 847–73. http://dx.doi.org/10.1512/iumj.2015.64.5541.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Trybuła, Maria. "Invariant metrics on the symmetrized bidisc." Complex Variables and Elliptic Equations 60, no. 4 (2014): 559–65. http://dx.doi.org/10.1080/17476933.2014.948543.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

COSTARA, C. "THE SYMMETRIZED BIDISC AND LEMPERT'S THEOREM." Bulletin of the London Mathematical Society 36, no. 05 (2004): 656–62. http://dx.doi.org/10.1112/s0024609304003200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Pflug, Peter, and Włodzimierz Zwonek. "Exhausting domains of the symmetrized bidisc." Arkiv för Matematik 50, no. 2 (2012): 397–402. http://dx.doi.org/10.1007/s11512-011-0153-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bhattacharyya, Tirthankar, Anindya Biswas, and Anwoy Maitra. "On the geometry of the symmetrized bidisc." Indiana University Mathematics Journal 71, no. 2 (2022): 685–713. http://dx.doi.org/10.1512/iumj.2022.71.8896.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Agler, Jim, Zinaida A. Lykova, and N. J. Young. "Extremal holomorphic maps and the symmetrized bidisc." Proceedings of the London Mathematical Society 106, no. 4 (2012): 781–818. http://dx.doi.org/10.1112/plms/pds049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Agler, J., and N. J. Young. "A Schwarz Lemma for the Symmetrized Bidisc." Bulletin of the London Mathematical Society 33, no. 2 (2001): 175–86. http://dx.doi.org/10.1112/blms/33.2.175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Symmetrized bidisk"

1

Lin, Cheng-Tsai, and 林成財. "Schwarz Lemma on Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/05462082649779495998.

Texto completo
Resumen
碩士<br>東海大學<br>數學系<br>89<br>Let $\Gamma$ denote the set of symmetrized bidisc. In this thesis we discuss the Schwarz lemma on $\Gamma$ also known as the special flat problem on $\Gamma$ as: Given $\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$ and $(s_{2},p_{2})\in\Gamma$, find an analytic function $\varphi:\mathbb{D}\rightarrow\Gamma$with $\varphi(\lambda)=(s(\lambda),p(\lambda))$ satisfies $$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$ Based on the equality of Carath\'odory and Kobayashi di
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lin, Tien-De, and 林天得. "Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/94495204389019542431.

Texto completo
Resumen
碩士<br>東海大學<br>數學系<br>89<br>Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Cara
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lin, Chun-Ming, and 林俊銘. "Realization of Spectral Nevanlinna-Pick Interpolation Problem on Symmetrized Bidisc." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/40559244736778567050.

Texto completo
Resumen
碩士<br>東海大學<br>數學系<br>91<br>In this paper we discuss the two-point spectral Nevanlinna-Pick interpolation problem for 2 2 general case by using the previous results of T.D.Lin[13], C.T.Lin[8] and Yeh[9]: Given distinct , , , ,find an analytic function such that and it's realization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sau, Haripada. "Operator Theory on Symmetrized Bidisc and Tetrablock-some Explicit Constructions." Thesis, 2015. http://etd.iisc.ernet.in/2005/3887.

Texto completo
Resumen
A pair of commuting bounded operators (S; P ) acting on a Hilbert space, is called a -contraction, if it has the symmetrised bides = f(z1 + z2; z1z2) : jz1j 1; jz2j 1g C2 as a spectral set. For every -contraction (S; P ), the operator equation S S P = DP F DP has a unique solution F 2 B(DP ) with numerical radius, denoted by w(F ), no greater than one, where DP is the positive square root of (I P P ) and DP = RanDP . This unique operator is called the fundamental operator of (S; P ). This thesis constructs an explicit normal boundary dilation for -contractions. A triple of commuting bounded o
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chen, Chun Ming, and 陳駿銘. "The Graphics of Symmetrized Bidiscs and Spectral Interpolating Functions." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/85112132699826651919.

Texto completo
Resumen
碩士<br>東海大學<br>數學系<br>98<br>The symmetrrized bidisc is defined as the set of two coefficients of a quadratic equation with its roots located inside the unit disc. In this thesis, a matlab-based GUI is developed to the graphs of the symmetrized bidisc and associated spectral interpolating functions. Since the symmetrized bidisc belongs to C^2, its 3D projection is plotted as the real or imaginary part of one variable is fixed. By the way, the graph of the symmetrized bidisc is also shown when the radius of the root's location changes. Furthermorre, two kinds of approaches are used to construct t
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Symmetrized bidisk"

1

Young, Nicholas, Jim Agler, and Zinaida Lykova. Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc. American Mathematical Society, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Symmetrized bidisk"

1

Agler, Jim, Zinaida A. Lykova, and N. J. Young. "Carathéodory extremal functions on the symmetrized bidisc." In Operator Theory, Analysis and the State Space Approach. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04269-1_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Agler, J., F. B. Yeh, and N. J. Young. "Realization of Functions into the Symmetrised Bidisc." In Reproducing Kernel Spaces and Applications. Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8077-0_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

"Model Theory on the Symmetrized Bidisc." In Operator Analysis. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108751292.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!