Siga este enlace para ver otros tipos de publicaciones sobre el tema: Symmetric varieties.

Artículos de revistas sobre el tema "Symmetric varieties"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Symmetric varieties".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, n.º 2 (abril de 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Guay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, n.º 4 (diciembre de 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

De Concini, C. y T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, n.º 2-3 (junio de 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hong, Jiuzu y Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, n.º 20 (2 de junio de 2022): 585–615. http://dx.doi.org/10.1090/ert/613.

Texto completo
Resumen
We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in the twisted setting. We also get some applications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Can, Mahir Bilen, Roger Howe y Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, n.º 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, n.º 1 (17 de enero de 2019): 1–56. http://dx.doi.org/10.1090/ert/522.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Uzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, n.º 9 (noviembre de 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cuntz, M., Y. Ren y G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, n.º 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, n.º 3 (julio de 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Aramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, n.º 2 (marzo de 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Springer, T. A. "Decompositions related to symmetric varieties". Journal of Algebra 329, n.º 1 (marzo de 2011): 260–73. http://dx.doi.org/10.1016/j.jalgebra.2010.03.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kiritchenko, Valentina y Amalendu Krishna. "Equivariant cobordism of flag varieties and of symmetric varieties". Transformation Groups 18, n.º 2 (5 de mayo de 2013): 391–413. http://dx.doi.org/10.1007/s00031-013-9223-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Lee, Jae-Hyouk, Kyeong-Dong Park y Sungmin Yoo. "Kähler–Einstein Metrics on Smooth Fano Symmetric Varieties with Picard Number One". Mathematics 9, n.º 1 (5 de enero de 2021): 102. http://dx.doi.org/10.3390/math9010102.

Texto completo
Resumen
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present their algebraic moment polytopes and compute the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Yu, Chenglong y Zhiwei Zheng. "Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties". Algebra & Number Theory 14, n.º 10 (19 de noviembre de 2020): 2647–83. http://dx.doi.org/10.2140/ant.2020.14.2647.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Can, Mahir Bilen, Michael Joyce y Benjamin Wyser. "Wonderful symmetric varieties and Schubert polynomials". Ars Mathematica Contemporanea 15, n.º 2 (11 de septiembre de 2018): 523–42. http://dx.doi.org/10.26493/1855-3974.1062.ba8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Pate, Thomas H. "Algebraic varieties in the symmetric algebra". Linear and Multilinear Algebra 20, n.º 1 (noviembre de 1986): 63–74. http://dx.doi.org/10.1080/03081088608817742.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

PANYUSHEV, DMITRI y OKSANA YAKIMOVA. "Symmetric pairs and associated commuting varieties". Mathematical Proceedings of the Cambridge Philosophical Society 143, n.º 2 (septiembre de 2007): 307–21. http://dx.doi.org/10.1017/s0305004107000473.

Texto completo
Resumen
AbstractLet $\g=\g_0\oplus\g_1$ be a $\mathbb Z_2$-grading of a simple Lie algebra $\g$. The commuting variety associated with such a grading is the variety of pairs of commuting elements from $\g_1$. We study the problem of irreducibility of these varieties. Using invariant-theoretic technique, we present new instances of reducible and irreducible commuting varieties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Sankaran, G. K. "Fundamental group of locally symmetric varieties". Manuscripta Mathematica 90, n.º 1 (diciembre de 1996): 39–48. http://dx.doi.org/10.1007/bf02568292.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Strickland, Elisabetta. "Equivariant betti numbers for symmetric varieties". Journal of Algebra 145, n.º 1 (enero de 1992): 120–27. http://dx.doi.org/10.1016/0021-8693(92)90180-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kollár, János. "Symmetric powers of Severi–Brauer varieties". Annales de la faculté des sciences de Toulouse Mathématiques 27, n.º 4 (2018): 849–62. http://dx.doi.org/10.5802/afst.1584.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Maffei, Andrea y Rocco Chiriv�. "Projective normality of complete symmetric varieties". Duke Mathematical Journal 122, n.º 1 (marzo de 2004): 93–123. http://dx.doi.org/10.1215/s0012-7094-04-12213-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Pumplün, Susanne. "Symmetric composition algebras over algebraic varieties". manuscripta mathematica 132, n.º 3-4 (22 de febrero de 2010): 307–33. http://dx.doi.org/10.1007/s00229-010-0348-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Buch, Anders Skovsted. "Stanley Symmetric Functions and Quiver Varieties". Journal of Algebra 235, n.º 1 (enero de 2001): 243–60. http://dx.doi.org/10.1006/jabr.2000.8478.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Akhiezer, D. N. y E. B. Vinberg. "Weakly symmetric spaces and spherical varieties". Transformation Groups 4, n.º 1 (marzo de 1999): 3–24. http://dx.doi.org/10.1007/bf01236659.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kinser, Ryan y Jenna Rajchgot. "Type D quiver representation varieties, double Grassmannians, and symmetric varieties". Advances in Mathematics 376 (enero de 2021): 107454. http://dx.doi.org/10.1016/j.aim.2020.107454.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

AVAN, J., J.-M. MAILLARD, M. TALON y C. VIALLET. "ALGEBRAIC VARIETIES FOR THE CHIRAL POTTS MODEL". International Journal of Modern Physics B 04, n.º 10 (agosto de 1990): 1743–62. http://dx.doi.org/10.1142/s0217979290000875.

Texto completo
Resumen
We describe the symmetries of the chiral checkerboard Potts model (duality, inversion relation, …) and write down the algebraic variety corresponding to the integrable case advocated by Baxter, Perk, Au-Yang. We examine some of its subvarieties, in different limits and for various lattices, with a special emphasis on q=3. This yields for q=3, a new algebraic variety where the standard scalar checkerboard Potts model is solvable. By a comparative analysis of the parametrization of the integrable four-state chiral Potts model and the one of the symmetric Ashkin-Teller model, we bring to light algebraic subvarieties for the q-state chiral Potts model which are invariant under the symmetries of the model. We recover in this manner the Fateev-Zamolodchikov points.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chajda, Ivan. "Varieties with modular and distributive lattices of symmetric or reflexive relations". Czechoslovak Mathematical Journal 42, n.º 4 (1992): 623–30. http://dx.doi.org/10.21136/cmj.1992.128357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chirivì, Rocco, Corrado De Concini y Andrea Maffei. "On normality of cones over symmetric varieties". Tohoku Mathematical Journal 58, n.º 4 (diciembre de 2006): 599–616. http://dx.doi.org/10.2748/tmj/1170347692.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hemmer, David J. y Daniel K. Nakano. "Support varieties for modules over symmetric groups". Journal of Algebra 254, n.º 2 (agosto de 2002): 422–40. http://dx.doi.org/10.1016/s0021-8693(02)00104-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Casagrande, Cinzia. "Centrally symmetric generators in toric Fano varieties". manuscripta mathematica 111, n.º 4 (1 de agosto de 2003): 471–85. http://dx.doi.org/10.1007/s00229-003-0374-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Maffei, Andrea. "Orbits in Degenerate Compactifications of Symmetric Varieties". Transformation Groups 14, n.º 1 (20 de noviembre de 2008): 183–94. http://dx.doi.org/10.1007/s00031-008-9040-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Süß, Hendrik. "Kähler–Einstein metrics on symmetric FanoT-varieties". Advances in Mathematics 246 (octubre de 2013): 100–113. http://dx.doi.org/10.1016/j.aim.2013.06.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Gagliardi, Giuliano y Johannes Hofscheier. "The generalized Mukai conjecture for symmetric varieties". Transactions of the American Mathematical Society 369, n.º 4 (2 de mayo de 2016): 2615–49. http://dx.doi.org/10.1090/tran/6738.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Fan, Zhaobing, Chun-Ju Lai, Yiqiang Li, Li Luo y Weiqiang Wang. "Affine flag varieties and quantum symmetric pairs". Memoirs of the American Mathematical Society 265, n.º 1285 (mayo de 2020): 0. http://dx.doi.org/10.1090/memo/1285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Venkataramana, T. N. "On Cycles on Compact Locally Symmetric Varieties". Monatshefte f?r Mathematik 135, n.º 3 (1 de abril de 2002): 221–44. http://dx.doi.org/10.1007/s006050200018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ruzzi, Alessandro. "Projective normality of complete toroidal symmetric varieties". Journal of Algebra 318, n.º 1 (diciembre de 2007): 302–22. http://dx.doi.org/10.1016/j.jalgebra.2007.07.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Franz, Matthias. "Symmetric Products of Equivariantly Formal Spaces". Canadian Mathematical Bulletin 61, n.º 2 (1 de junio de 2018): 272–81. http://dx.doi.org/10.4153/cmb-2017-032-0.

Texto completo
Resumen
AbstractLet X be a CW complex with a continuous action of a topological group G. We show that if X is equivariantly formal for singular cohomology with coefficients in some field , then so are all symmetric products of X and in fact all its Γ-products. In particular, symmetric products of quasi-projective M-varieties are again M-varieties. This generalizes a result by Biswas and D’Mello about symmetric products of M-curves. We also discuss several related questions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Jones, Oliver. "On the geometry of varieties of invertible symmetric and skew-symmetric matrices". Pacific Journal of Mathematics 180, n.º 1 (1 de septiembre de 1997): 89–100. http://dx.doi.org/10.2140/pjm.1997.180.89.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

RUZZI, ALESSANDRO. "SMOOTH PROJECTIVE SYMMETRIC VARIETIES WITH PICARD NUMBER ONE". International Journal of Mathematics 22, n.º 02 (febrero de 2011): 145–77. http://dx.doi.org/10.1142/s0129167x11005678.

Texto completo
Resumen
We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover, we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Casarotti, Alex, Alex Massarenti y Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, n.º 11 (25 de octubre de 2018): 217. http://dx.doi.org/10.3390/math6110217.

Texto completo
Resumen
Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging and guiding problems in the area of tensor decomposition. We survey the main known results on these conjectures, and, under suitable bounds on the rank, we prove them, building on classical techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound for Comon’s conjecture given by flattenings by producing new equations for secant varieties of Veronese and Segre varieties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Boe, Brian D. y Joseph H. G. Fu. "Characteristic Cycles in Hermitian Symmetric Spaces". Canadian Journal of Mathematics 49, n.º 3 (1 de junio de 1997): 417–67. http://dx.doi.org/10.4153/cjm-1997-021-7.

Texto completo
Resumen
AbstractWe give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties X in the classical Hermitian symmetric spaces: namely the intersection homology sheaves IHX and the constant sheaves ℂX. The three main cases of interest are the Hermitian symmetric spaces for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian) and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if and only if the associated Dynkin diagramis simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the Cn and Dn cases are new.Our approach is to compute CC(ℂX) by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute CC(IHX). The geometric method is based on the fundamental formula where the Xr ↓ X constitute a family of tubes around the variety X. This formula leads at once to an expression for the coefficients of CC(ℂX) as the degrees of certain singular maps between spheres.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Yohan BRUNEBARBE. "A strong hyperbolicity property of locally symmetric varieties". Annales scientifiques de l'École normale supérieure 53, n.º 6 (2020): 1545–60. http://dx.doi.org/10.24033/asens.2453.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Marberg, Eric y Brendan Pawlowski. "Gröbner geometry for skew-symmetric matrix Schubert varieties". Advances in Mathematics 405 (agosto de 2022): 108488. http://dx.doi.org/10.1016/j.aim.2022.108488.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Browning, T. D. y A. Gorodnik. "Power-free values of polynomials on symmetric varieties". Proceedings of the London Mathematical Society 114, n.º 6 (10 de marzo de 2017): 1044–80. http://dx.doi.org/10.1112/plms.12030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Gorodnik, Alexander, Hee Oh y Nimish Shah. "Integral points on symmetric varieties and Satake compatifications". American Journal of Mathematics 131, n.º 1 (2009): 1–57. http://dx.doi.org/10.1353/ajm.0.0034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Bigeni, Ange y Evgeny Feigin. "Symmetric Dellac configurations and symplectic/orthogonal flag varieties". Linear Algebra and its Applications 573 (julio de 2019): 54–79. http://dx.doi.org/10.1016/j.laa.2019.03.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Beelen, Peter y Prasant Singh. "Linear codes associated to skew-symmetric determinantal varieties". Finite Fields and Their Applications 58 (julio de 2019): 32–45. http://dx.doi.org/10.1016/j.ffa.2019.03.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Robles, C. y D. The. "Rigid Schubert varieties in compact Hermitian symmetric spaces". Selecta Mathematica 18, n.º 3 (17 de enero de 2012): 717–77. http://dx.doi.org/10.1007/s00029-011-0082-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

TAKAHASHI, NOBUYOSHI. "QUANDLE VARIETIES, GENERALIZED SYMMETRIC SPACES, AND φ-SPACES". Transformation Groups 21, n.º 2 (25 de noviembre de 2015): 555–76. http://dx.doi.org/10.1007/s00031-015-9351-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Richardson, R. W. y T. A. Springer. "Complements to ‘The Bruhat order on symmetric varieties’". Geometriae Dedicata 49, n.º 2 (febrero de 1994): 231–38. http://dx.doi.org/10.1007/bf01610623.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía