Siga este enlace para ver otros tipos de publicaciones sobre el tema: Symmetric varieties.

Libros sobre el tema "Symmetric varieties"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 20 mejores mejores libros para su investigación sobre el tema "Symmetric varieties".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Manivel, Laurent. Symmetric functions, Schubert polynomials, and degeneracy loci. Providence, RI: American Mathematical Society, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fukaya, Kenji. Lagrangian Floer theory and mirror symmetry on compact toric manifolds. Paris: Société Mathématique de France, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Noriko, Yui, Yau Shing-Tung 1949-, Lewis James Dominic 1953- y Banff International Research Station for Mathematics Innovation & Discovery., eds. Mirror symmetry V: Proceedings of the BIRS workshop on Calabi-Yau varieties and mirror symmetry, December 6-11, 2003, Banff International Research Station for Mathematics Innovation & Discovery. Providence, R.I: American Mathematical Society, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rodríguez, Rubí E., 1953- editor of compilation, ed. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces: Conference in honor of Emilio Bujalance on Riemann and Klein surfaces, symmetries and moduli spaces, June 24-28, 2013, Linköping University, Linköping, Sweden. Providence, Rhode Island: American Mathematical Society, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

On complete symmetric varieties. 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Smooth compactifications of locally symmetric varieties. 2a ed. Cambridge, UK: Cambridge University Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Kuga, Michio. Kuga Varieties: Fiber Varieties over a Symmetric Space Whose Fibers Are Abelian Varieties. American Mathematical Society, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Luo, Li, Weiqiang Wang, Zhaobing Fan, Chun-Ju Lai y Yiqiang Li. Affine Flag Varieties and Quantum Symmetric Pairs. American Mathematical Society, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Cattani, Eduardo, Fouad El Zein, Phillip A. Griffiths y Lê Dũng Tráng, eds. Shimura Varieties: A Hodge-Theoretic Perspective. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0012.

Texto completo
Resumen
This chapter discusses certain cleverly constructed unions of modular varieties, called Shimura varieties, in the Hodge-theoretic perspective. The Shimura varieties can show the minimal (i.e., reflex) field of definition of a Hodge/zero locus setting, and also reveal quite a bit about the interplay between “upstairs” and “downstairs” (in Ď and Γ‎\D, respectively) fields of definition of subvarieties. Hence, the chapter defines the Hermitian symmetric domains in D as well as the locally symmetric varieties Γ‎\D. It then discusses the theory of complex multiplication, before introducing Shimura varieties ∐ᵢ(Γ‎ᵢ\D) as well as three key Adélic lemmas, before finally laying out the fields of definition.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

(Translator), John R. Swallow, ed. Symmetric Functions, Schubert Polynomials and Degeneracy Loci (Smf/Ams Texts and Monographs, Vol 6 and Cours Specialises Numero 3, 1998). American Mathematical Society, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Haesemeyer, Christian y Charles A. Weibel. The Norm Residue Theorem in Motivic Cohomology. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.001.0001.

Texto completo
Resumen
This book presents the complete proof of the Bloch–Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The book draws on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduces the key figures behind its development. It proceeds to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. It then addresses symmetric powers of motives and motivic cohomology operations. The book unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

(Editor), Noriko Yui y James Dominic Lewis (Editor), eds. Calabi-Yau Varieties and Mirror Symmetry (Fields Institute Communications, V. 38.). American Mathematical Society, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Shoemaker, David. The Architecture of Blame and Praise. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/9780198915867.001.0001.

Texto completo
Resumen
Abstract Many theorists of responsibility take for granted that to be a responsible agent is to be an apt target of responses like blame and praise. But what do these responses consist in, precisely? And do they really belong together, as symmetrical counterparts of each other? While there has been a lot of philosophical work on the nature of blame over the past fifteen years—yielding multiple conflicting theories—there has been very little on the nature of praise until very recently. And indeed, those who have done some investigation of praise—including both philosophers and psychologists—have come away thinking that it is quite different than blame, and that the two are in fact not symmetrical counterparts at all. In this book, David Shoemaker investigates the complicated nature of blame and praise—teasing out their many varieties while defending a general symmetry between them—and then he provides a thoroughgoing normative grounding for all types of blame and praise, one that does not appeal in any fashion to desert or the metaphysics of free will. The many original interdisciplinary contributions in the book include: a new functionalist theory of our entire interpersonal blame and praise system; the revelation of a heretofore unrecognized kind of blame; a discussion of how the case of narcissism tells an important story about the symmetrical structure of the blame/praise system; an investigation into the blame/praise emotions and their aptness conditions; an exploration into the key differences between other-blame and self-blame; and an argument drawing from experimental economics for why desert is unnecessary to render apt the hurtful ways in which we occasionally blame one another.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

H, Lange, Rubí E. Rodríguez, Paola Comparin, Eduardo de Sequeira Esteves y Sebastián Reyes-Carocca. Geometry at the Frontier : Symmetries and Moduli Spaces of Algebraic Varieties: 2016-2018 Workshops on Geometry at the Frontier Pucón, Chile. American Mathematical Society, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

String-Math 2016: June 27-July 2, 2016, Collège de France, Paris, France. American Mathematical Society, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Integrability, Quantization, and Geometry. American Mathematical Society, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía