Literatura académica sobre el tema "Symmetric varieties"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Symmetric varieties".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Symmetric varieties"
Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, n.º 2 (abril de 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.
Texto completoGuay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, n.º 4 (diciembre de 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.
Texto completoDe Concini, C. y T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, n.º 2-3 (junio de 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.
Texto completoHong, Jiuzu y Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, n.º 20 (2 de junio de 2022): 585–615. http://dx.doi.org/10.1090/ert/613.
Texto completoCan, Mahir Bilen, Roger Howe y Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, n.º 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.
Texto completoLi, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, n.º 1 (17 de enero de 2019): 1–56. http://dx.doi.org/10.1090/ert/522.
Texto completoUzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, n.º 9 (noviembre de 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.
Texto completoCuntz, M., Y. Ren y G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, n.º 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.
Texto completoPragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, n.º 3 (julio de 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.
Texto completoAramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, n.º 2 (marzo de 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.
Texto completoTesis sobre el tema "Symmetric varieties"
Esposito, Francesco. "Orbits in symmetric varieties". Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917110.
Texto completoYoung, Ian David. "Symmetric squares of modular Abelian varieties". Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500087.
Texto completomazzon, andrea. "Hilbert functions and symmetric tensors identifiability". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Texto completoMbirika, Abukuse III. "Analysis of symmetric function ideals: towards a combinatorial description of the cohomology ring of Hessenberg varieties". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/708.
Texto completoShu, Cheng. "E-Polynomial of GLn⋊<σ>-character varieties". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7038.
Texto completoLet σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product GLn⋊<σ>. Let Y→X be a double covering of Riemann surfaces, which is exactly the unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering transformation is denoted by τ. To each puncture (removed ramification point), we prescribe a GLn(C)-conjugacy class contained in the connected component GLn(C).σ . And we require the collection C of these conjugacy classes to be generic. Our GLn(C)⋊<σ>-character variety is the moduli of the pairs (L,Φ), where L is a local system on Y and Φ:L → τ*L* is an isomorphism, whose monodromy at the punctures are determined by C. We compute the E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the problem to point-counting over finite fields. The counting formula involves the irreducible characters of GL_n(q)⋊<σ>, and so the l-adic character table of GL_n(q)⋊<σ> is determined along the way. The resulting polynomial is expressed as the in-ner product of certain symmetric functions associated to the wreath product (Z/2Z)^N⋊(S_N), with N=[n/2]
Chen, Jiaming. "Topology at infinity and atypical intersections for variations of Hodge structures". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7049.
Texto completoThis thesis studies topological and geometrical aspects of some interesting spaces springing from Hodge theory, such as locally symmetric varieties, and their generalization, Hodge varieties; and the period maps which take value in them.In Chapter 1 (joint work with Looijenga) we study the Baily-Borel compactifications of locally symmetric varieties and its toroidal variants, as well as the Deligne-Mumford compactification of the moduli of curves from a topological viewpoint. We define a "stacky homotopy type" for these spaces as the homotopy type of a small category and thus generalize an old result of Charney-Lee on the Baily-Borel compactificationof Ag and recover (and rephrase) a more recent one of Ebert-Giansiracusa on the Deligne-Mumford compactification. We also describe an extension of the period map for Riemann surfaces in these terms.In Chapter 2 (joint work with Looijenga) we give a relatively simple algebrogeometric proof of another result of Charney and Lee on the stable cohomology of the Satake-Baily-Borel compactification of Ag and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers.In Chapter 3 (themain chapter of this thesis) we study an atypical intersection problem for an integral polarized variation of Hodge structure V on a smooth irreducible complex quasi-projective variety S. We show that the union of the non-factor special subvarieties for (S,V), which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This proves a conjecture of Klingler
Menes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Texto completoLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Petracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Texto completoPrince, Thomas. "Applications of mirror symmetry to the classification of Fano varieties". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43374.
Texto completoLi, Binru [Verfasser] y Fabrizio [Akademischer Betreuer] Catanese. "Moduli spaces of varieties with symmetries / Binru Li. Betreuer: Fabrizio Catanese". Bayreuth : Universität Bayreuth, 2016. http://d-nb.info/1113107324/34.
Texto completoLibros sobre el tema "Symmetric varieties"
Manivel, Laurent. Symmetric functions, Schubert polynomials, and degeneracy loci. Providence, RI: American Mathematical Society, 2001.
Buscar texto completoFukaya, Kenji. Lagrangian Floer theory and mirror symmetry on compact toric manifolds. Paris: Société Mathématique de France, 2016.
Buscar texto completoNoriko, Yui, Yau Shing-Tung 1949-, Lewis James Dominic 1953- y Banff International Research Station for Mathematics Innovation & Discovery., eds. Mirror symmetry V: Proceedings of the BIRS workshop on Calabi-Yau varieties and mirror symmetry, December 6-11, 2003, Banff International Research Station for Mathematics Innovation & Discovery. Providence, R.I: American Mathematical Society, 2006.
Buscar texto completoRodríguez, Rubí E., 1953- editor of compilation, ed. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces: Conference in honor of Emilio Bujalance on Riemann and Klein surfaces, symmetries and moduli spaces, June 24-28, 2013, Linköping University, Linköping, Sweden. Providence, Rhode Island: American Mathematical Society, 2014.
Buscar texto completoMumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Buscar texto completoMumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Buscar texto completoMumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Buscar texto completoMumford, David, Avner Ash, Michael Rapoport y Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Buscar texto completoSmooth compactifications of locally symmetric varieties. 2a ed. Cambridge, UK: Cambridge University Press, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Symmetric varieties"
Fulton, William y Piotr Pragacz. "Symmetric polynomials useful in geometry". En Schubert Varieties and Degeneracy Loci, 26–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096383.
Texto completoKrashen, Daniel y David J. Saltman. "Severi—Brauer Varieties and Symmetric Powers". En Encyclopaedia of Mathematical Sciences, 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_5.
Texto completoDijkgraaf, Robbert. "Fields, Strings, Matrices and Symmetric Products". En Moduli of Curves and Abelian Varieties, 151–99. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_8.
Texto completoHelminck, A. G. "On Orbit Decompositions for Symmetric k-Varieties". En Symmetry and Spaces, 83–127. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4875-6_6.
Texto completoHain, Richard. "Locally Symmetric Families of Curves and Jacobians". En Moduli of Curves and Abelian Varieties, 91–108. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_5.
Texto completoMumford, David. "A New Approach to Compactifying Locally Symmetric Varieties". En Selected Papers, 571–84. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4265-7_19.
Texto completoPopov, Vladimir L. y Evgueni A. Tevelev. "Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces". En Encyclopaedia of Mathematical Sciences, 131–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_8.
Texto completoCiubotaru, Dan, Kyo Nishiyama y Peter E. Trapa. "Regular Orbits of Symmetric Subgroups on Partial Flag Varieties". En Representation Theory, Complex Analysis, and Integral Geometry, 61–86. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4817-6_4.
Texto completoTai, Hsin-sheng. "A class of symmetric functions and Chern classes of projective varieties". En Lecture Notes in Mathematics, 261–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087539.
Texto completoHelminck, Aloysius. "Combinatorics related to orbit closures of symmetric subgroups in flag varieties". En CRM Proceedings and Lecture Notes, 71–90. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/crmp/035/05.
Texto completoActas de conferencias sobre el tema "Symmetric varieties"
Ghorashi, Ali, Sachin Vaidya, Mikael C. Rechtsman, Wladimir A. Benalcazar, Marin Soljačić y Thomas Christensen. "Is Photonic Band Topology Common?" En CLEO: Fundamental Science, FW3M.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3m.8.
Texto completoMakam, Visu y Avi Wigderson. "Symbolic determinant identity testing (SDIT) is not a null cone problem; and the symmetries of algebraic varieties". En 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2020. http://dx.doi.org/10.1109/focs46700.2020.00086.
Texto completo