Literatura académica sobre el tema "Surveillance immune"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Surveillance immune".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Surveillance immune"
Shastri, Nilabh, Chansu Park y Jian Guan. "Immune surveillance of immune surveillance". Molecular Immunology 150 (octubre de 2022): 2. http://dx.doi.org/10.1016/j.molimm.2022.05.018.
Texto completoSwann, Jeremy B. y Mark J. Smyth. "Immune surveillance of tumors". Journal of Clinical Investigation 117, n.º 5 (1 de mayo de 2007): 1137–46. http://dx.doi.org/10.1172/jci31405.
Texto completoGrossman, Zvi y Ronald B. Herberman. "‘Immune surveillance’ without immunogenicity". Immunology Today 7, n.º 5 (mayo de 1986): 128–31. http://dx.doi.org/10.1016/0167-5699(86)90075-7.
Texto completoPrehn, Richmond T. y Liisa M. Prehn. "The flip side of immune surveillance: immune dependency". Immunological Reviews 222, n.º 1 (abril de 2008): 341–56. http://dx.doi.org/10.1111/j.1600-065x.2008.00609.x.
Texto completoKim, Ryungsa, Manabu Emi y Kazuaki Tanabe. "Cancer immunoediting from immune surveillance to immune escape". Immunology 121, n.º 1 (mayo de 2007): 1–14. http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x.
Texto completoSchaller, Julien y Judith Agudo. "Metastatic Colonization: Escaping Immune Surveillance". Cancers 12, n.º 11 (16 de noviembre de 2020): 3385. http://dx.doi.org/10.3390/cancers12113385.
Texto completoLowe, Scott. "Immune Surveillance of Senescent Cells". Innovation in Aging 5, Supplement_1 (1 de diciembre de 2021): 246. http://dx.doi.org/10.1093/geroni/igab046.952.
Texto completoAhmad, Aamir. "Tumor microenvironment and immune surveillance". Microenvironment and Microecology Research 4, n.º 1 (2022): 6. http://dx.doi.org/10.53388/mmr2022006.
Texto completoOh, Julia y Derya Unutmaz. "Immune cells for microbiota surveillance". Science 366, n.º 6464 (24 de octubre de 2019): 419–20. http://dx.doi.org/10.1126/science.aaz4014.
Texto completoZanetti, M. y N. R. Mahadevan. "Immune Surveillance from Chromosomal Chaos?" Science 337, n.º 6102 (27 de septiembre de 2012): 1616–17. http://dx.doi.org/10.1126/science.1228464.
Texto completoTesis sobre el tema "Surveillance immune"
Rosenthal, Rachel Suzanne. "Immune editing and surveillance in cancer evolution". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10047362/.
Texto completoSCHEIDECKER, CATHERINE. "Cellule nk : surveillance immune et resistance naturelle". Strasbourg 1, 1987. http://www.theses.fr/1987STR10724.
Texto completoMarri, Eswari. "Immune surveillance of activated immune and tumour cells by surfactant protein D". Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/13847.
Texto completoKaur, Anuvinder. "Innate immune surveillance in ovarian and pancreatic cancer". Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15847.
Texto completoCheung, Ann F. "Investigating immune surveillance, tolerance, and therapy in cancer". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46809.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Vita.
Includes bibliographical references.
Maximizing the potential of cancer immunotherapy requires model systems that closely recapitulate human disease to study T cell responses to tumor antigens and to test immune therapeutic strategies. Current model systems largely relied on chemically-induced and spontaneous tumors in immunodeficient mice or on transplanted tumors. Such systems are limited because they fail to reproduce the complex interactions that exist among an emerging tumor, its microenvironment and the multiple elements of an intact immune system. We created a new system that is compatible with Cre-loxP-regulatable mouse cancer models in which the defined antigen SIY is specifically over-expressed in tumors, mimicking clinically-relevant tumor-associated antigens. To demonstrate the utility of this system, we characterized SIYreactive T cells in the context of lung adenocarcinoma, revealing multiple levels of antigenspecific T cell tolerance that serve to limit an effective anti-tumor response. Thymic deletion reduced the number of SIY-reactive T cells present in the animals. When potentially self-reactive T cells in the periphery were activated, they were efficiently eliminated. Inhibition of apoptosis resulted in more persistent self-reactive T cells, but these cells became anergic to antigen stimulation. Finally, in the presence of tumors over- expressing SIY, SIY-specific T cells required a higher level of costimulation to achieve functional activation.
(cont.) Adoptive cell transfer (ACT) therapy for cancer has demonstrated tremendous efficacy in clinical trials, particularly for the treatment of metastatic melanoma. There is great potential in broadening the application of ACT to treat other cancer types, but the threat of severe autoimmunity may limit its use. Studies in other model systems have demonstrated successful induction of anti-tumor immunity against self-antigens without detrimental autoimmunity. This is possibly due to the preferential recognition of tumor over normal somatic tissue by activated T cells. In our system, SIY provides a means to achieve this bias because of its over-expression in tumors. Thus, we applied adoptive T cell transfer therapy combined with lymphodepleting preconditioning to treat autochthonous lung tumors over-expressing SIY self-antigen. With this treatment, we overcame peripheral tolerance, successfully inducing large number of functional anti-tumor T cells. These T cells are able to influence lung tumors over-expressing self-antigen. Importantly, despite large numbers of potentially self-reactive T cells, we did not observed overt autoimmunity. Immune tolerance thwarts efforts to utilize immune therapy against cancer. We have discerned many mechanisms by which tolerance to cancer in potential achieved. Both Foxp3+ T regulatory cell and myeloid-derived suppressor cell populations are expanded in the presence of cancer in our mouse models.
(cont.) In addition, we identified LAG-3 as a potential factor that serves to limit anti-tumor T cell activity in the context of adoptive cell transfer therapy. Our new system represents a valuable tool in which to explore the mechanisms that contribute to T cell tolerance to cancer and to evaluate therapies aimed at overcoming this tolerance. In addition, our model provides a platform, on which more advanced mouse models of human cancer can be generated for cancer immunology.
by Ann F. Cheung.
Ph.D.
Loughhead, Scott McNabb. "Immune Surveillance by Effector and Memory CD8+ T Cells". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718721.
Texto completoMedical Sciences
Sowinski, Stefanie. "Transmission and immune surveillance of human T cell-tropic retroviridae". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501764.
Texto completoTextor, Johannes [Verfasser]. "Search and learning in the immune system : models of immune surveillance and negative selection / Johannes Textor". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2012. http://d-nb.info/1024336921/34.
Texto completoBlaimer, Stephanie [Verfasser] y Edward K. [Akademischer Betreuer] Geissler. "Impact of innate and adaptive immune cells in tumor immune surveillance / Stephanie Blaimer ; Betreuer: Edward K. Geissler". Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1210729202/34.
Texto completoStrickland, Ian. "The role of immune surveillance in inflammatory reactions in human skin". Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307670.
Texto completoLibros sobre el tema "Surveillance immune"
Sonnenfeld, Gerald. Cytokines and immune surveillance in humans: Fifth semi-annual progress report. [Washington, DC: National Aeronautics and Space Administration, 1993.
Buscar texto completoSmith, Richard T. Immune Surveillance. Elsevier Science & Technology Books, 2012.
Buscar texto completoCytokines and immune surveillance in humans. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoKishore, Uday, Roberta Bulla y Taruna Madan, eds. Odyssey of Surfactant Proteins SP-A and SP-D: Innate Immune Surveillance Molecules. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-680-8.
Texto completoEpidemiological surveillance of current infections: new threats and challenges. Remedium Privolzhye, 2021. http://dx.doi.org/10.21145/978-5-6046124-2-2_2021.
Texto completoCate, Fred H. y James X. Dempsey, eds. Bulk Collection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190685515.001.0001.
Texto completoDalbeth, Nicola. Pathophysiology of gout. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0039.
Texto completoSherman, Mark E., Melissa A. Troester, Katherine A. Hoadley y William F. Anderson. Morphological and Molecular Classification of Human Cancer. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0003.
Texto completoStewart, Alex G., Sam Ghebrehewet y Peter MacPherson. New and emerging infectious diseases. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198745471.003.0026.
Texto completoCapítulos de libros sobre el tema "Surveillance immune"
Mitchison, N. A. "Immune Surveillance". En Investigation and Exploitation of Antibody Combining Sites, 335. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-5006-4_40.
Texto completoKoga, Tetsuya. "Immune Surveillance against Dermatophyte Infection". En Fungal Immunology, 443–52. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-25445-5_22.
Texto completoJung, M. Katherine. "Immune Surveillance and Tumor Evasion". En Alcohol and Cancer, 193–210. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0040-0_10.
Texto completoMastrangelo, Domenico. "Immune Surveillance and Cancer Pathogenesis". En Orbital Tumors, 9–20. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1510-1_2.
Texto completoRoy, Moumita. "Alternative Splicing and Immune Surveillance". En Alternative Splicing and Cancer, 125–44. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003260394-8.
Texto completoHuso, David L. y Opendra Narayan. "Escape of Lentiviruses from Immune Surveillance". En Virus Variability, Epidemiology and Control, 61–73. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9271-3_5.
Texto completoUenotsuchi, Takeshi, Tetsuo Matsuda, Masutaka Furue y Tetsuya Koga. "Immune Surveillance against Sporothrix schenckii Infection". En Fungal Immunology, 453–58. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-25445-5_23.
Texto completoVan den Eynde, B., B. Lethé, A. Van Pel y T. Boon. "Tumor Rejection Antigens and Immune Surveillance". En Modern Trends in Human Leukemia IX, 279–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76829-3_42.
Texto completoChen, Peter W. y Bruce R. Ksander. "Influence of Immune Surveillance and Immune Privilege on Formation of Intraocular Tumors". En Immune Response and the Eye, 276–89. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000099278.
Texto completoPaape, Max J., Kimberly Shafer-Weaver, Anthony V. Capuco, Kaat Van Oostveldt y Christian Burvenich. "Immune Surveillance of Mammary Tissue by Phagocytic Cells". En Biology of the Mammary Gland, 259–77. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46832-8_31.
Texto completoActas de conferencias sobre el tema "Surveillance immune"
Dudimah, Duafalia F., Roman V. Uzhachenko, Samuel T. Pellom, Asel K. Biktasova, Mikhail M. Dikov, David P. Carbone y Anil Shanker. "Abstract 3983: Resuscitating immune surveillance in cancer." En Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3983.
Texto completoAgudo, Judith, Miriam Merad y Brian D. Brown. "Abstract A168: Quiescent stem cells evade immune surveillance". En Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-a168.
Texto completoBandyopadhyay, G., H. L. Huyck, S. Bhattacharya, R. Misra, J. Lillis, J. Myers, S. Romas et al. "Respiratory Epithelial Cell Regulation of Pulmonary Immune Surveillance". En American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2130.
Texto completoKuttke, Mario, Emine Sahin, Julia Pisoni, Sophie Percig, Andrea Vogel, Daniel Kraemmer, Leslie Hanzl et al. "Abstract 527: Myeloid PTEN deficiency impairs tumor immune surveillance via immune checkpoint inhibition". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-527.
Texto completoRazia, D., H. Abdelrazek, H. Mohamed y A. Arjuna. "De Novo Prostate Adenocarcinoma in a Lung Transplant Recipient: Immune-surveillance or Immune-suppression?" En American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a5219.
Texto completoDudimah, Duafalia F., Samuel T. Pellom, Roman V. Uzhachenko, David P. Carbone, Mikhail M. Dikov y Anil Shanker. "Abstract 3642: Cancer therapy by resuscitating Notch immune surveillance". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3642.
Texto completoZal, M. Anna, Todd Bartkowiak, Grzegorz Chodaczek, Veena Papanna, Meenakshi Shanmugasundaram y Tomasz Zal. "Abstract 4290: Visualizing immune surveillance in lung metastasis progression". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4290.
Texto completoJohnstone, Ricky W. "Abstract IA25: Epigenetic regulation of cancer immune surveillance processes". En Abstracts: Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; May 6-9, 2017; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3265.hemmal17-ia25.
Texto completoVonderheide, Robert H. "Abstract SY09-01: Inflammatory networks and cancer immune surveillance." En Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-sy09-01.
Texto completoBardelli, Alberto. "Abstract IA18: Inactivation of DNA repair to improve immune surveillance". En Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-ia18.
Texto completoInformes sobre el tema "Surveillance immune"
Luo, Yunping y Ralph A. Reisfeld. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada574527.
Texto completoReisfeld, Ralph R., Debbie Liao y Yunping Luo. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2011. http://dx.doi.org/10.21236/ada553886.
Texto completoBovbjerg, Dana H. Immune Surveillance, Cytokines and Breast Cancer Risk: Genetic and Psychological Influences in African American Women. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2003. http://dx.doi.org/10.21236/ada418645.
Texto completoBovbjerg, Dana H. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2001. http://dx.doi.org/10.21236/ada403466.
Texto completoBovbjerg, Dana H. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2003. http://dx.doi.org/10.21236/ada427835.
Texto completoBovbjerg, Dana H. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2004. http://dx.doi.org/10.21236/ada431795.
Texto completoBovbjerg, Dana H. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2002. http://dx.doi.org/10.21236/ada410581.
Texto completoGupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper y Priyanka Mehra. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. Institute of Development Studies (IDS), marzo de 2021. http://dx.doi.org/10.19088/sshap.2021.034.
Texto completoGupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper, Priyanka Mehra y Asif Raza. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. Institute of Development Studies, marzo de 2022. http://dx.doi.org/10.19088/sshap.2022.004.
Texto completoGupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper, Priyanka Mehra y Asif Raza. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. SSHAP, marzo de 2021. http://dx.doi.org/10.19088/sshap.2021.012.
Texto completo