Literatura académica sobre el tema "Surrogate dynamics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Surrogate dynamics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Surrogate dynamics"
Huang, C.-K., Q. Tang, Y. K. Batygin, O. Beznosov, J. Burby, A. Kim, S. Kurennoy, T. Kwan y H. N. Rakotoarivelo. "Symplectic neural surrogate models for beam dynamics". Journal of Physics: Conference Series 2687, n.º 6 (1 de enero de 2024): 062026. http://dx.doi.org/10.1088/1742-6596/2687/6/062026.
Texto completoNAKAMURA, TOMOMICHI y MICHAEL SMALL. "APPLYING THE METHOD OF SMALL–SHUFFLE SURROGATE DATA: TESTING FOR DYNAMICS IN FLUCTUATING DATA WITH TRENDS". International Journal of Bifurcation and Chaos 16, n.º 12 (diciembre de 2006): 3581–603. http://dx.doi.org/10.1142/s0218127406016999.
Texto completoKoutsoupakis, Josef y Dimitrios Giagopoulos. "Drivetrain Response Prediction Using AI-based Surrogate and Multibody Dynamics Model". Machines 11, n.º 5 (28 de abril de 2023): 514. http://dx.doi.org/10.3390/machines11050514.
Texto completoCharles, Giovanni, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir Bhatt y Seth Flaxman. "Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 12 (26 de junio de 2023): 14170–77. http://dx.doi.org/10.1609/aaai.v37i12.26658.
Texto completoChen, Menghui, Xiaoshu Gao, Cheng Chen, Tong Guo y Weijie Xu. "A Comparative Study of Meta-Modeling for Response Estimation of Stochastic Nonlinear MDOF Systems Using MIMO-NARX Models". Applied Sciences 12, n.º 22 (14 de noviembre de 2022): 11553. http://dx.doi.org/10.3390/app122211553.
Texto completoLiu, Shizhong, Ziyao Wang, Jingwen Chen, Rui Xu y Dong Ming. "The Estimation of Knee Medial Force with Substitution Parameters during Walking and Turning". Sensors 24, n.º 17 (29 de agosto de 2024): 5595. http://dx.doi.org/10.3390/s24175595.
Texto completoGong, Xu, Zhengqi Gu y Zhenlei Li. "Surrogate model for aerodynamic shape optimization of a tractor-trailer in crosswinds". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, n.º 10 (9 de mayo de 2012): 1325–39. http://dx.doi.org/10.1177/0954407012442295.
Texto completoShe, N. y D. Basketfield. "Streamflow dynamics at the Puget Sound, Washington: application of a surrogate data method". Nonlinear Processes in Geophysics 12, n.º 4 (3 de mayo de 2005): 461–69. http://dx.doi.org/10.5194/npg-12-461-2005.
Texto completoGlaz, Bryan, Li Liu, Peretz P. Friedmann, Jeremy Bain y Lakshmi N. Sankar. "A Surrogate-Based Approach to Reduced-Order Dynamic Stall Modeling". Journal of the American Helicopter Society 57, n.º 2 (1 de abril de 2012): 1–9. http://dx.doi.org/10.4050/jahs.57.022002.
Texto completoMAKINO, Kohei, Makoto MIWA, Kohei SHINTANI, Atsuji ABE y Yutaka SASAKI. "Surrogate modeling of vehicle dynamics using deep learning". Proceedings of Design & Systems Conference 2019.29 (2019): 2209. http://dx.doi.org/10.1299/jsmedsd.2019.29.2209.
Texto completoTesis sobre el tema "Surrogate dynamics"
Koch, Christiane. "Quantum dissipative dynamics with a surrogate Hamiltonian". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14816.
Texto completoThis thesis investigates condensed phase quantum systems which interact with their environment and which are subject to ultrashort laser pulses. For such systems the timescales of the involved processes cannot be separated, and standard approaches to treat open quantum systems fail. The Surrogate Hamiltonian method represents one example of a number of new approaches to address quantum dissipative dynamics. Its further development and application to phenomena under current experimental investigation are presented. The single dissipative processes are classified and discussed in the first part of this thesis. In particular, a model of dephasing is introduced into the Surrogate Hamiltonian method. This is of importance for future work in fields such as coherent control and quantum computing. In regard to these subjects, it is a great advantage of the Surrogate Hamiltonian over other available methods that it relies on a spin, i.e. a fully quantum mechanical description of the bath. The Surrogate Hamiltonian method is applied to a standard model of charge transfer in condensed phase, two nonadiabatically coupled harmonic oscillators immersed in a bath. This model is still an oversimplification of, for example, a molecule in solution, but it serves as testing ground for the theoretical description of a prototypical ultrafast pump-probe experiment. All qualitative features of such an experiment are reproduced and shortcomings of previous treatments are identified. Ultrafast experiments attempt to monitor reaction dynamics on a femtosecond timescale. This can be captured particularly well by the Surrogate Hamiltonian as a method based on a time-dependent picture. The combination of the numerical solution of the time-dependent Schrödinger equation with the phase space visualization given by the Wigner function allows for a step by step following of the sequence of events in a charge transfer cycle in a very intuitive way. The utility of the Surrogate Hamiltonian is furthermore significantly enhanced by the incorporation of the Filter Diagonalization method. This allows to obtain frequency domain results from the dynamics which can be converged within the Surrogate Hamiltonian approach only for comparatively short times. The second part of this thesis is concerned with the theoretical treatment of laser induced desorption of small molecules from oxide surfaces. This is an example which allows for a description of all aspects of the problem with the same level of rigor, i.e. ab initio potential energy surfaces are combined with a microscopic model for the excitation and relaxation processes. This model of the interaction between the excited adsorbate-substrate complex and substrate electron-hole pairs relies on a simplified description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole interaction between system and bath. All parameters are connected to results from electronic structure calculations. The obtained desorption probabilities and desorption velocities are simultaneously found to be in the right range as compared to the experimental results. The Surrogate Hamiltonian approach therefore allows for a complete description of the photodesorption dynamics on an ab initio basis for the first time.
Hibbs, Ryan E. "Conformational dynamics of the acetylcholine binding protein, a Nicotinic receptor surrogate". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3237010.
Texto completoTitle from first page of PDF file (viewed December 8, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Conradie, Tanja. "Modelling of nonlinear dynamic systems : using surrogate data methods". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51834.
Texto completoENGLISH ABSTRACT: This study examined nonlinear modelling techniques as applied to dynamic systems, paying specific attention to the Method of Surrogate Data and its possibilities. Within the field of nonlinear modelling, we examined the following areas of study: attractor reconstruction, general model building techniques, cost functions, description length, and a specific modelling methodology. The Method of Surrogate Data was initially applied in a more conventional application, i.e. testing a time series for nonlinear, dynamic structure. Thereafter, it was used in a less conventional application; i.e. testing the residual vectors of a nonlinear model for membership of identically and independently distributed (i.i.d) noise. The importance of the initial surrogate analysis of a time series (determining whether the apparent structure of the time series is due to nonlinear, possibly chaotic behaviour) was illustrated. This study confrrmed that omitting this crucial step could lead to a flawed conclusion. If evidence of nonlinear structure in the time series was identified, a radial basis model was constructed, using sophisticated software based on a specific modelling methodology. The model is an iterative algorithm using minimum description length as the stop criterion. The residual vectors of the models generated by the algorithm, were tested for membership of the dynamic class described as i.i.d noise. The results of this surrogate analysis illustrated that, as the model captures more of the underlying dynamics of the system (description length decreases), the residual vector resembles Li.d noise. It also verified that the minimum description length criterion leads to models that capture the underlying dynamics of the time series, with the residual vector resembling Li.d noise. In the case of the "worst" model (largest description length), the residual vector could be distinguished from Li.d noise, confirming that it is not the "best" model. The residual vector of the "best" model (smallest description length), resembled Li.d noise, confirming that the minimum description length criterion selects a model that captures the underlying dynamics of the time series. These applications were illustrated through analysis and modelling of three time series: a time series generated by the Lorenz equations, a time series generated by electroencephalograhpic signal (EEG), and a series representing the percentage change in the daily closing price of the S&P500 index.
AFRIKAANSE OPSOMMING: In hierdie studie ondersoek ons nie-lineere modelleringstegnieke soos toegepas op dinamiese sisteme. Spesifieke aandag word geskenk aan die Metode van Surrogaat Data en die moontlikhede van hierdie metode. Binne die veld van nie-lineere modellering het ons die volgende terreine ondersoek: attraktor rekonstruksie, algemene modelleringstegnieke, kostefunksies, beskrywingslengte, en 'n spesifieke modelleringsalgoritme. Die Metode and Surrogaat Data is eerstens vir 'n meer algemene toepassing gebruik wat die gekose tydsreeks vir aanduidings van nie-lineere, dimanise struktuur toets. Tweedens, is dit vir 'n minder algemene toepassing gebruik wat die residuvektore van 'n nie-lineere model toets vir lidmaatskap van identiese en onafhanlike verspreide geraas. Die studie illustreer die noodsaaklikheid van die aanvanklike surrogaat analise van 'n tydsreeks, wat bepaal of die struktuur van die tydsreeks toegeskryf kan word aan nie-lineere, dalk chaotiese gedrag. Ons bevesting dat die weglating van hierdie analise tot foutiewelike resultate kan lei. Indien bewyse van nie-lineere gedrag in die tydsreeks gevind is, is 'n model van radiale basisfunksies gebou, deur gebruik te maak van gesofistikeerde programmatuur gebaseer op 'n spesifieke modelleringsmetodologie. Dit is 'n iteratiewe algoritme wat minimum beskrywingslengte as die termineringsmaatstaf gebruik. Die model se residuvektore is getoets vir lidmaatskap van die dinamiese klas wat as identiese en onafhanlike verspreide geraas bekend staan. Die studie verifieer dat die minimum beskrywingslengte as termineringsmaatstaf weI aanleiding tot modelle wat die onderliggende dinamika van die tydsreeks vasvang, met die ooreenstemmende residuvektor wat nie onderskei kan word van indentiese en onafhanklike verspreide geraas nie. In die geval van die "swakste" model (grootse beskrywingslengte), het die surrogaat analise gefaal omrede die residuvektor van indentiese en onafhanklike verspreide geraas onderskei kon word. Die residuvektor van die "beste" model (kleinste beskrywingslengte), kon nie van indentiese en onafhanklike verspreide geraas onderskei word nie en bevestig ons aanname. Hierdie toepassings is aan die hand van drie tydsreekse geillustreer: 'n tydsreeks wat deur die Lorenz vergelykings gegenereer is, 'n tydsreeks wat 'n elektroenkefalogram voorstel en derdens, 'n tydsreeks wat die persentasie verandering van die S&P500 indeks se daaglikse sluitingsprys voorstel.
Millard, Daniel C. "Identification and control of neural circuit dynamics for natural and surrogate inputs in-vivo". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53405.
Texto completoSegee, Molly Catherine. "Surrogate Models for Transonic Aerodynamics for Multidisciplinary Design Optimization". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71321.
Texto completoMaster of Science
Minsavage, Kaitlyn Emily. "Neural Networks as Surrogates for Computational Fluid Dynamics Predictions of Hypersonic Flows". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1610017352981371.
Texto completoLagerstrom, Tiffany. "All in the Family: The Role of Sibling Relationships as Surrogate Attachment Figures". Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/scripps_theses/1138.
Texto completoBrouwer, Kirk Rowse. "Enhancement of CFD Surrogate Approaches for Thermo-Structural Response Prediction in High-Speed Flows". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543340520905498.
Texto completoSadet, Jérémy. "Surrogate models for the analysis of friction induced vibrations under uncertainty". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2022. http://www.theses.fr/2022UPHF0014.
Texto completoThe automotive squeal is a noise disturbance, which has won the interest of the research and industrialists over the year. This elusive phenomenon, perceived by the vehicle purchasers as a poor-quality indicator, causes a cost which becomes more and more important for the car manufacturers, due to client’s claims. Thus, it is all the more important to propose and develop methods allowing predicting the occurring of this noise disturbance with efficiency, thanks to numerical simulations. Hence, this thesis proposes to pursue the recent works that showed the certain contributions of an integration of uncertainties into the squeal numerical simulations. The objective is to suggest a strategy of uncertainty propagation, for squeal simulations, maintaining numerical cost acceptable (especially, for pre-design phases). Several numerical methods are evaluated and improved to allow precise computations and with computational time compatible with the constraints of the industry. After positioning this thesis work with respect to the progress of the researchers working on the squeal subject, a new numerical method is proposed to improve the computation of the eigensolutions of a large quadratic eigenvalue problem. To reduce the numerical cost of such studies, three surrogate models (gaussian process, deep gaussian process and deep neural network) are studied and compared to suggest the optimal strategy in terms of methodology or model setting. The construction of the training set is a key aspect to insure the predictions of these surrogate models. A new optimisation strategy, hinging on bayesian optimisation, is proposed to efficiently target the samples of the training set, samples which are probably expensive to compute from a numerical point of view. These optimisation methods are then used to present a new uncertainty propagation method, relying on a fuzzy set modelisation
Taheri, Mehdi. "Machine Learning from Computer Simulations with Applications in Rail Vehicle Dynamics and System Identification". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81417.
Texto completoPh. D.
Libros sobre el tema "Surrogate dynamics"
T, Patera Anthony y Langley Research Center, eds. Surrogates for numerical simulations, optimization of eddy-promoter heat exchanges. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoRiches, D. Analysis and evaluation of different types of test surrogate employed in the dynamic performance testing of fall-arrest equipment. Sudbury: HSE Books, 2002.
Buscar texto completoHuffaker, Ray, Marco Bittelli y Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Texto completoMajumdar, Anindita. Transnational Commercial Surrogacy and the (Un)Making of Kin in India. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199474363.001.0001.
Texto completoHuffaker, Ray, Marco Bittelli y Rodolfo Rosa. Data Preprocessing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0006.
Texto completoMcAuley, Danny F. y Thelma Rose Craig. Measurement of extravascular lung water in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0140.
Texto completoCapítulos de libros sobre el tema "Surrogate dynamics"
Husain, Afzal y Kwang-Yong Kim. "Optimization of Ribbed Microchannel Heat Sink Using Surrogate Analysis". En Computational Fluid Dynamics 2008, 529–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_69.
Texto completoParipovic, Jelena y Patricia Davies. "Characterizing the Dynamics of Systems Incorporating Surrogate Energetic Materials". En Special Topics in Structural Dynamics, Volume 6, 101–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_10.
Texto completoChiambaretto, Pierre-Louis, Miguel Charlotte, Joseph Morlier, Philippe Villedieu y Yves Gourinat. "Surrogate Granular Materials for Modal Test of Fluid Filled Tanks". En Special Topics in Structural Dynamics, Volume 6, 139–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_14.
Texto completoTaflanidis, Alexandros A., Jize Zhang y Dimitris Patsialis. "Applications of Reduced Order and Surrogate Modeling in Structural Dynamics". En Model Validation and Uncertainty Quantification, Volume 3, 297–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12075-7_35.
Texto completoKůdela, Jakub y Ladislav Dobrovský. "Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems". En Lecture Notes in Computer Science, 303–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70068-2_19.
Texto completoSipponen, P., O. Suovaniemi y M. Härkönen. "The role of pepsinogen assays as surrogate markers of gastritis dynamics in population studies". En Helicobactor pylori, 127–32. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1763-2_12.
Texto completoDenimal, E., L. Nechak, J. J. Sinou y S. Nacivet. "A New Surrogate Modeling Method Associating Generalized Polynomial Chaos Expansion and Kriging for Mechanical Systems Subjected to Friction-Induced Vibration". En Special Topics in Structural Dynamics, Volume 6, 17–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53841-9_2.
Texto completoMorales, Xabier, Jordi Mill, Kristine A. Juhl, Andy Olivares, Guillermo Jimenez-Perez, Rasmus R. Paulsen y Oscar Camara. "Deep Learning Surrogate of Computational Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage". En Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges, 157–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39074-7_17.
Texto completoAumann, Quirin, Peter Benner, Jens Saak y Julia Vettermann. "Model Order Reduction Strategies for the Computation of Compact Machine Tool Models". En Lecture Notes in Production Engineering, 132–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_10.
Texto completoSmith, Jonathan R. "Surrogate Aerodynamics Modeling Applied to Surrogate Structural Dynamical Systems". En Model Validation and Uncertainty Quantification, Volume 3, 189–92. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37003-8_30.
Texto completoActas de conferencias sobre el tema "Surrogate dynamics"
LENGEL, RUSSELL y JEFFREY LINDER. "The use of rubidium as a surrogate for potassium in combustion system imaging". En 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1547.
Texto completoBoopathy, Komahan y Markus P. Rumpfkeil. "A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model". En 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2964.
Texto completoChoze, Sergio y Felipe A. Viana. "Simple and inexpensive algorithm for surrogate filtering". En 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0139.
Texto completoLeifsson, Leifur y Slawomir Koziel. "Surrogate-Based Shape Optimization of Low-Speed Wind Tunnel Contractions". En 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3344.
Texto completoBeyhaghi, Pooriya, Daniele Cavaglieri y Thomas Bewley. "Delaunay-based Derivative-free Optimization via Global Surrogate, Part 1: Theory". En 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2707.
Texto completoPark, Chanyoung, Raphael T. Haftka y Nam Ho Kim. "Simple Alternative to Bayesian Multi-Fidelity Surrogate Framework". En 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0135.
Texto completoChowdhury, Souma, Ali Mehmani, Weiyang Tong y Achille Messac. "Adaptive Model Refinement in Surrogate-based Multiobjective Optimization". En 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0417.
Texto completoTrizila, Patrick, Chang-Kwon Kang, Miguel Visbal y Wei Shyy. "Unsteady Fluid Physics and Surrogate Modeling of Low Reynolds Number, Flapping Airfoils". En 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3821.
Texto completoPyle, James, Mozhgan Kabiri Chimeh y Paul Richmond. "Surrogate Modelling for Efficient Discovery of Emergent Population Dynamics". En 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2019. http://dx.doi.org/10.1109/hpcs48598.2019.9188208.
Texto completoViana, Felipe y Raphael Haftka. "Importing Uncertainty Estimates from One Surrogate to Another". En 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2237.
Texto completoInformes sobre el tema "Surrogate dynamics"
Meidani, Hadi y Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, noviembre de 2021. http://dx.doi.org/10.36501/0197-9191/21-036.
Texto completoElliott, J. Hydra modeling of experiments to study ICF capsule fill hole dynamics using surrogate targets. Office of Scientific and Technical Information (OSTI), agosto de 2007. http://dx.doi.org/10.2172/925990.
Texto completoTorres, Marissa, Michael-Angelo Lam y Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), octubre de 2022. http://dx.doi.org/10.21079/11681/45641.
Texto completoHarris y Edlund. L51766 Instantaneous Rotational Velocity Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), mayo de 1997. http://dx.doi.org/10.55274/r0010119.
Texto completoBailey Bond, Robert, Pu Ren, James Fong, Hao Sun y Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, agosto de 2024. http://dx.doi.org/10.17760/d20680141.
Texto completo