Literatura académica sobre el tema "Surface chemistry of zwitterion"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Surface chemistry of zwitterion".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Surface chemistry of zwitterion"
Abdullah, Norfadhilatuladha, Norhaniza Yusof, Mohammed Abdullah Dahim, Muhammad Faris Hamid, Lau Woei Jye, Juhana Jaafar, Farhana Aziz, Wan Norhayati Wan Salleh, Ahmad Fauzi Ismail y Nurasyikin Misdan. "Single-Step Surface Hydrophilization on Ultrafiltration Membrane with Enhanced Antifouling Property for Pome Wastewater Treatment". Separations 10, n.º 3 (9 de marzo de 2023): 188. http://dx.doi.org/10.3390/separations10030188.
Texto completoRegev, Clil, Zhongyi Jiang, Roni Kasher y Yifat Miller. "Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers". Molecules 27, n.º 21 (31 de octubre de 2022): 7394. http://dx.doi.org/10.3390/molecules27217394.
Texto completoChiao, Yu-Hsuan, Arijit Sengupta, Micah Belle Marie Yap Ang, Shu-Ting Chen, Teow Yeit Haan, Jorge Almodovar, Wei-Song Hung y S. Ranil Wickramasinghe. "Application of Zwitterions in Forward Osmosis: A Short Review". Polymers 13, n.º 4 (15 de febrero de 2021): 583. http://dx.doi.org/10.3390/polym13040583.
Texto completoLi, Bor-Ran, Mo-Yuan Shen, Hsiao-hua Yu y Yaw-Kuen Li. "Rapid construction of an effective antifouling layer on a Au surface via electrodeposition". Chem. Commun. 50, n.º 51 (2014): 6793–96. http://dx.doi.org/10.1039/c4cc01329h.
Texto completoPenfold, Jeffrey y Robert K. Thomas. "Neutron reflection and the thermodynamics of the air–water interface". Physical Chemistry Chemical Physics 24, n.º 15 (2022): 8553–77. http://dx.doi.org/10.1039/d2cp00053a.
Texto completoDassonville, Delphine, Thomas Lécuyer, Johanne Seguin, Yohann Corvis, Jianhua Liu, Guanyu Cai, Julia Mouton, Daniel Scherman, Nathalie Mignet y Cyrille Richard. "Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice". Coatings 13, n.º 11 (8 de noviembre de 2023): 1913. http://dx.doi.org/10.3390/coatings13111913.
Texto completoNikam, Shantanu P., Peiru Chen, Karissa Nettleton, Yen-Hao Hsu y Matthew L. Becker. "Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications". Biomacromolecules 21, n.º 7 (27 de mayo de 2020): 2714–25. http://dx.doi.org/10.1021/acs.biomac.0c00456.
Texto completoMondini, Sara, Marianna Leonzino, Carmelo Drago, Anna M. Ferretti, Sandro Usseglio, Daniela Maggioni, Paolo Tornese, Bice Chini y Alessandro Ponti. "Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells". Langmuir 31, n.º 26 (23 de junio de 2015): 7381–90. http://dx.doi.org/10.1021/acs.langmuir.5b01496.
Texto completoKravchenko, A. A., E. M. Demianenko, A. G. Grebenyuk, M. I. Terets, M. G. Portna y V. V. Lobanov. "Quantum chemical study on the interaction of arginine with silica surface". Himia, Fizika ta Tehnologia Poverhni 12, n.º 4 (30 de diciembre de 2021): 358–64. http://dx.doi.org/10.15407/hftp12.04.358.
Texto completoCosta, Paolo, Iris Trosien, Joel Mieres-Perez y Wolfram Sander. "Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion". Journal of the American Chemical Society 139, n.º 37 (11 de septiembre de 2017): 13024–30. http://dx.doi.org/10.1021/jacs.7b05807.
Texto completoTesis sobre el tema "Surface chemistry of zwitterion"
Ghisolfi, Alessio. "Applications of functionnal diphosphines quinonoid zwietterions to coordination chemistry and surface functionalization". Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF016/document.
Texto completoThe aim of this thesis was to develop new families of polyfunctional ligands to study their coordination chemistry towards transition metals and, depending on the products formed, to investigate their physical (e.g. magnetic) and / or catalytic properties. The evaluation of their potential for the formation of new materials as well as for the functionalization of metal surfaces was also part of the objective of this thesis. Therefore, each ligand has been functionalized with groups suitable for the anchoring on metallic surfaces, such as zwitterionic or thioethers moieties
Pu, Yuzhou. "Synthesis and functionalization of hybrid plasmon-semiconductor nanoparticles for cancer phototherapy". Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS031.
Texto completoGold nanoparticles possess high light absorption cross sections due to their localized surface plasmon resonance, making them promising photosensitizers for various biomedical applications. Among them, gold nanorods (AuNRs), can effectively absorb light in the near-infrared range, which is the optimal window for light penetration into the human body. As a result, AuNRs hold significant potential as photosensitizers for phototherapy.When AuNRs absorb light, they generate high-energy “hot” electrons within their structure. These hot electrons can directly convert the absorbed energy into heat, leading to a temperature increase in the surrounding environment. This localized heating can effectively kill cancer cells. Alternatively, hot electrons can react with water or dioxygen in the environment, generating cytotoxic reactive oxygen species. These reactive oxygen species can induce programmed cell death. However, current challenges in phototherapies involving AuNRs revolve around the low efficiency of plasmonic energy conversion and utilization, limiting their further clinical trials. One possible solution to address this challenge is to combine AuNRs with specific semiconductors. This combination allows for the transfer of light energy absorbed by AuNRs to the semiconductor material, either through hot electron injection or energy transfer mechanisms.We synthesized hybrid dumbbell-shaped nanoparticles consisting of gold nanorods (AuNRs) and titanium dioxide (TiO2), AuNR/TiO2. In this heterostructure, hot electrons generated within the AuNRs could be directly injected into the conduction band of TiO2. This transfer extends the lifetime of energetic electrons, enabling them to effectively react with dioxygen in the environment and generate hydroxyl radicals. To ensure the stability of these nanoparticles in a physiological environment, we functionalized them with polyethylene glycol-phosphonate polymer ligands. The density of these polymer ligands on the nanoparticle surface plays a crucial role in achieving optimal photoactivity. We then evaluated the potential of these hybrid nanoparticles for photodynamic therapy in vitro on cancer cells after irradiation with near-infrared (NIR) light.We also explored the combination of AuNRs with semiconductor materials such as silver sulfide and copper sulfide, resulting in the formation of core-shell hybrid nanostructures. In these hybrid systems, the plasmon energy present in the AuNRs is transferred to the semiconductor materials through dipole-dipole interactions. This energy transfer process leads to the creation of exciton pairs within the semiconductors, which can further generate reactive oxygen species. To enhance the efficiency of this energy transfer and prevent undesired recombination between excited electrons and holes, we introduced an insulating silica layer at the interface between the gold and semiconductor components. We also assessed the photoactivity of these hybrid nanoparticles under continuous-wave NIR illumination.Lastly, the therapeutic efficacy of nanoparticles is often compromised by their poor biodistribution, as the majority of injected nanoparticles are recognized and captured by macrophages. To address this challenge, we tested the ability of different zwitterionic polymer ligands to avoid nanoparticle capture by macrophages. Semiconductor quantum dots, iron oxide and gold nanoparticles decorated with polyzwitterions were synthesized. Their interactions with proteins and macrophages were investigated in vitro to assess their potential for improved biocompatibility and reduced macrophage uptake. Furthermore, we conducted pharmacokinetic studies on AuNRs functionalized with different types of polyzwitterions. These studies aimed to evaluate the behavior of these functionalized nanoparticles within the body and gain insights into their distribution and clearance pathways
Dragota, Simona Olimpia. "Contributions to the chemistry of higher-coordinate Silicon synthesis, structure, and stereodynamics of new Silicon(IV) complexes with SiO2N2C, SiO4C, or SiO6 skeletons /". Doctoral thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978743571.
Texto completoBishop, Alexander James. "Actinide surface chemistry". Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54193/.
Texto completoCooper, Philip Andrew. "Surface chemistry of foams". Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335544.
Texto completoBrown, Ken D. "The surface chemistry of beryllium". Thesis, University of Salford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333978.
Texto completoSirbu, Elena. "Surface chemistry of cellulose nanocrystals". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33308/.
Texto completoZhao, Jun. "Surface Raman spectroscopy : instrumentation and application in surface and corrosion sciences /". The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948807588245.
Texto completoLu, Jian Ren. "The surface chemistry of emulsion breakdown". Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384850.
Texto completoMcElroy, Daniel. "Grain surface chemistry in molecular clouds". Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602462.
Texto completoLibros sobre el tema "Surface chemistry of zwitterion"
Surface chemistry. Oxford: Oxford University Press, 2001.
Buscar texto completoInc, ebrary, ed. Surface chemistry. Jaipur, India: Oxford Book Co., 2008.
Buscar texto completoMorton, Rosoff, ed. Nano-surface chemistry. New York: Marcel Dekker, 2002.
Buscar texto completoNano-Surface Chemistry. New York: Marcel Dekker, Inc., 2003.
Buscar texto completoV, Churaev N., Muller V. M y Kitchener J. A, eds. Surface forces. New York: Consultants Bureau, 1987.
Buscar texto completoI, Prigogine y Rice Stuart Alan 1932-, eds. Surface properties. New York: John Wiley and Sons, Inc., 1996.
Buscar texto completoCarley, Albert F., Philip R. Davies, Graham J. Hutchings y Michael S. Spencer, eds. Surface Chemistry and Catalysis. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6637-0.
Texto completoD, Shchukin E., ed. Colloid and surface chemistry. Amsterdam: Elsevier, 2001.
Buscar texto completoSurface and colloid chemistry. Lexington, KY]: [CreateSpace Independent Publishing Platform], 2014.
Buscar texto completoRideal, Eric Keightley. Introduction to surface chemistry. [Place of publication not identified]: Nash Press, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Surface chemistry of zwitterion"
Shaabani, Ahmad, Afshin Sarvary y Ali Maleki. "Zwitterions and Zwitterion-Trapping Agents in Isocyanide Chemistry". En Isocyanide Chemistry, 263–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652532.ch8.
Texto completoBare, Simon R. y G. A. Somorjai. "Surface Chemistry". En Photocatalysis and Environment, 63–189. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3015-5_3.
Texto completoBelsey, N. A., A. G. Shard y C. Minelli. "Surface Chemistry". En Nanomaterial Characterization, 153–78. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118753460.ch8.
Texto completoChesters, Michael A. y Andrew B. Horn. "Surface Chemistry". En Low-Temperature Chemistry of the Atmosphere, 219–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79063-8_10.
Texto completoVidal, Alain M. y Eugène Papirer. "Surface Chemistry and Surface Energy of Silicas". En Advances in Chemistry, 245–55. Washington DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0234.ch012.
Texto completoCaselli, P., T. Stantcheva y E. Herbst. "Grain Surface Chemistry". En Springer Proceedings in Physics, 479–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-18902-9_85.
Texto completoKoel, B. E. y G. A. Somorjai. "Surface Structural Chemistry". En Catalysis, 159–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-93281-6_3.
Texto completoSchröder, H. y K. L. Kompa. "Laser Surface Chemistry". En Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 693–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_129.
Texto completoPersson, Per O. Å. "MXene Surface Chemistry". En 2D Metal Carbides and Nitrides (MXenes), 125–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19026-2_8.
Texto completoMorrison, Glenn C. "Indoor Surface Chemistry". En Handbook of Indoor Air Quality, 885–901. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7680-2_32.
Texto completoActas de conferencias sobre el tema "Surface chemistry of zwitterion"
Adila, Ahmed S., Mahmoud Aboushanab, Ahmed Fathy y Muhammad Arif. "An Experimental Investigation of Surface Chemistry of Rocks in the Presence of Surfactants". En GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219143-ms.
Texto completoChild, Craig M., Michelle Foster, J. E. Ivanecky III, Scott S. Perry y Alan Campion. "Surface Raman spectroscopy as a probe of surface chemistry". En SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, editado por Janice M. Hicks, Wilson Ho y Hai-Lung Dai. SPIE, 1995. http://dx.doi.org/10.1117/12.221481.
Texto completoNemickas, Gedvinas, Deividas Čereška, Gabrielius Kontenis, Arnas Žemaitis, Greta Merkininkaite, Simas Šakirzanovas y Linas Jonušauskas. "Femtosecond surface structuring: wettability, friction control and surface chemistry". En Laser-based Micro- and Nanoprocessing XV, editado por Udo Klotzbach, Rainer Kling y Akira Watanabe. SPIE, 2021. http://dx.doi.org/10.1117/12.2578355.
Texto completoMolchanova (Shumakova), A. N., A. V. Kashkovsky y Ye A. Bondar. "A detailed DSMC surface chemistry model". En PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4902584.
Texto completoKimball, Gregory M., Nathan S. Lewis y Harry A. Atwater. "Synthesis and surface chemistry of Zn3P2". En 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922747.
Texto completoLi, Jianquan y Thomas Litzinger. "Near Surface Chemistry of BTTN/GAP". En 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3765.
Texto completoNasr-El-Din, H. A., M. B. Al-Otaibi, A. M. Al-Aamri y N. Ginest. "Surface Tension of Completion Brines". En SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93421-ms.
Texto completoPemberton, Jeanne E. "Surface Raman Scattering as a Probe of Metal Surface Chemistry". En Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.thb1.
Texto completoJun, Y., V. Boiadjiev, R. Major y Xiao-Yang Zhu. "Novel chemistry for surface engineering in MEMS". En Micromachining and Microfabrication, editado por Yuli Vladimirsky y Philip J. Coane. SPIE, 2000. http://dx.doi.org/10.1117/12.395598.
Texto completoBrady, B. y L. Martin. "Modeling multiphase atmospheric chemistry with SURFACE CHEMKIN". En Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4339.
Texto completoInformes sobre el tema "Surface chemistry of zwitterion"
Husson, Scott M., Viatcheslav Freger y Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, enero de 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Texto completoWaltenburg, Hanne N., John T. Yates y Jr. Surface Chemistry of Silicon. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1994. http://dx.doi.org/10.21236/ada288893.
Texto completoWei, Jian, V. S. Smentkowski, Jr Yates y J. T. Selected Bibliography II-Diamond Surface Chemistry. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1993. http://dx.doi.org/10.21236/ada273518.
Texto completoDuncan, Michael A. Architecture and Surface Chemistry of Compound Nanoclusters. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada567134.
Texto completoCarroll, S. A., W. L. Bourcier y B. L. Phillips. Surface chemistry and durability of borosilicate glass. Office of Scientific and Technical Information (OSTI), enero de 1994. http://dx.doi.org/10.2172/10124135.
Texto completoLi, Gonghu y Christine Caputo. Surface Molecular Chemistry in Solar Fuel Research. Office of Scientific and Technical Information (OSTI), mayo de 2021. http://dx.doi.org/10.2172/1782492.
Texto completoSena, Victoria, Janie Star y Daniel Kelly. Surface Chemistry Analysis of Additively Manufactured Titanium. Office of Scientific and Technical Information (OSTI), mayo de 2022. http://dx.doi.org/10.2172/1867165.
Texto completoSholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/1109080.
Texto completoFedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), febrero de 2020. http://dx.doi.org/10.2172/1599021.
Texto completoFedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), febrero de 2020. http://dx.doi.org/10.2172/1601369.
Texto completo