Artículos de revistas sobre el tema "Suppressive myeloid cells"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Suppressive myeloid cells".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Van Valckenborgh, Els, Jo Van Ginderachter, Kiavash Movahedi, Eline Menu y Karin Vanderkerken. "Myeloid-Derived Suppressor Cells in Multiple Myeloma." Blood 114, n.º 22 (20 de noviembre de 2009): 2794. http://dx.doi.org/10.1182/blood.v114.22.2794.2794.
Texto completoJoseph, Ann Mary, Dominique Parker, Tarik Hawkins, Nicholas Ciavattone y Eduardo Davila. "TLR-stimulated T cells acquire resistance to MDSC mediated suppression". Journal of Immunology 198, n.º 1_Supplement (1 de mayo de 2017): 205.15. http://dx.doi.org/10.4049/jimmunol.198.supp.205.15.
Texto completoParker, Katherine y Suzanne Ostrand-Rosenberg. "HMGB1: a regulator of myeloid-derived suppressor cell potency? (66.37)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 66.37. http://dx.doi.org/10.4049/jimmunol.186.supp.66.37.
Texto completoDu, Hong, Xinchun Ding y Cong Yan. "Metabolic reprogramming of myeloid-derived suppressive cells". Oncoscience 4, n.º 3-4 (28 de abril de 2017): 29–30. http://dx.doi.org/10.18632/oncoscience.349.
Texto completoOliver, Liliana, Rydell Alvarez, Raquel Diaz, Anet Valdés, Sean H. Colligan, Michael J. Nemeth, Danielle Y. F. Twum et al. "Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator". Journal for ImmunoTherapy of Cancer 10, n.º 9 (septiembre de 2022): e004710. http://dx.doi.org/10.1136/jitc-2022-004710.
Texto completoFrosch, Jennifer, Ilia Leontari y John Anderson. "Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment". Cancers 13, n.º 7 (6 de abril de 2021): 1743. http://dx.doi.org/10.3390/cancers13071743.
Texto completoTakacs, Gregory, Christian Kreiger, Defang Luo, Guimei Tian, Loic Deleyrolle y Jeffrey Harrison. "IMMU-21. GLIOMA-DERIVED FACTORS RECRUIT AND INDUCE AN IMMUNE SUPPRESSIVE PHENOTYPE IN BONE MARROW-DERIVED CCR2+ MYELOID CELLS". Neuro-Oncology 24, Supplement_7 (1 de noviembre de 2022): vii135—vii136. http://dx.doi.org/10.1093/neuonc/noac209.519.
Texto completoTopal Gorgun, Gullu, Hiroto Ohguchi, Teru Hideshima, Yu-Tzu Tai, Noopur Raje, Nikhil C. Munshi, Paul G. Richardson, Jacob P. Laubach y Kenneth C. Anderson. "Inhibition Of Myeloid Derived Suppressor Cells (MDSC) In The Multiple Myeloma Bone Marrow Microenvironment". Blood 122, n.º 21 (15 de noviembre de 2013): 3089. http://dx.doi.org/10.1182/blood.v122.21.3089.3089.
Texto completoPetersson, Julia, Sandra Askman, Åsa Pettersson, Stina Wichert, Thomas Hellmark, Åsa C. M. Johansson y Markus Hansson. "Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity". Journal of Immunology Research 2021 (6 de agosto de 2021): 1–10. http://dx.doi.org/10.1155/2021/6344344.
Texto completoD’Amico, Lucia, Sahil Mahajan, Aude-Hélène Capietto, Zhengfeng Yang, Ali Zamani, Biancamaria Ricci, David B. Bumpass et al. "Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer". Journal of Experimental Medicine 213, n.º 5 (4 de abril de 2016): 827–40. http://dx.doi.org/10.1084/jem.20150950.
Texto completoSinha, Pratima y Suzanne Ostrand-Rosenberg. "Withaferin A, a potent and abundant component of Withania somnifera root extract, reduces myeloid-derived suppressor cell function (P2103)". Journal of Immunology 190, n.º 1_Supplement (1 de mayo de 2013): 170.8. http://dx.doi.org/10.4049/jimmunol.190.supp.170.8.
Texto completoMatta, Benjamin, Brian Rosborough, Lisa Mathews, Quan Liu, Dalia Raich-Regue, Thomson Angus y Heth Turnquist. "Conditional STAT3-deficiency augments Flt3 ligand-driven myeloid-derived suppressor cell expansion but limits their suppressor function (IRM7P.487)". Journal of Immunology 192, n.º 1_Supplement (1 de mayo de 2014): 126.12. http://dx.doi.org/10.4049/jimmunol.192.supp.126.12.
Texto completoJung, Minho y Eun Young Choi. "TLR5 and TLR7 amplify different stage of myeloid cells". Journal of Immunology 202, n.º 1_Supplement (1 de mayo de 2019): 126.40. http://dx.doi.org/10.4049/jimmunol.202.supp.126.40.
Texto completoDong, Juan, Cassandra Gilmore, Hieu Ta, Keman Zhang, Sarah Stone y Li Wang. "501 VISTA regulates the differentiation and suppressive function of myeloid-derived suppressor cells". Journal for ImmunoTherapy of Cancer 8, Suppl 3 (noviembre de 2020): A536. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0501.
Texto completoXiong, Jia, Hui Wang y Qingqing Wang. "Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment". Advanced Biology 5, n.º 3 (11 de febrero de 2021): 1900311. http://dx.doi.org/10.1002/adbi.201900311.
Texto completoZeng, Dong, Haixia Long y Bo Zhu. "Antitumor effects of targeting myeloid-derived suppressive cells". Translational Cancer Research 9, n.º 9 (septiembre de 2020): 5787–97. http://dx.doi.org/10.21037/tcr.2020.01.52.
Texto completoChen, Siqi, Yi Zhang y Bin Zhang. "MicroRNA-155 regulates tumor myeloid-derived suppressive cells". Oncoscience 2, n.º 11 (19 de noviembre de 2015): 910–11. http://dx.doi.org/10.18632/oncoscience.269.
Texto completoSica, Antonio, Laura Strauss, Francesca Maria Consonni, Cristina Travelli, Armando Genazzani y Chiara Porta. "Metabolic regulation of suppressive myeloid cells in cancer". Cytokine & Growth Factor Reviews 35 (junio de 2017): 27–35. http://dx.doi.org/10.1016/j.cytogfr.2017.05.002.
Texto completoFilipazzi, P., R. Valenti, V. Huber, M. Iero, L. Pilla, G. Parmiani, M. Santinami y L. Rivoltini. "Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients and modulation by GM-CSF-based anti-tumor vaccine". Journal of Clinical Oncology 25, n.º 18_suppl (20 de junio de 2007): 21082. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.21082.
Texto completoPassioura, Toby, Alla Dolnikov, Sylvie Shen y Geoff Symonds. "N-Ras–Induced Growth Suppression of Myeloid Cells Is Mediated by IRF-1". Cancer Research 65, n.º 3 (1 de febrero de 2005): 797–804. http://dx.doi.org/10.1158/0008-5472.797.65.3.
Texto completoHaverkamp., Jessica y Timothy Ratliff. "Regulatory function of myeloid-derived suppressor cells is restricted to inflammatory site. (98.25)". Journal of Immunology 184, n.º 1_Supplement (1 de abril de 2010): 98.25. http://dx.doi.org/10.4049/jimmunol.184.supp.98.25.
Texto completoThakuri, Bal Krishna Chand, Jinyu Zhang, Juan Zhao, Lam N. Nguyen, Lam N. T. Nguyen, Madison Schank, Sushant Khanal et al. "HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3–miR124 Axis". Cells 9, n.º 12 (18 de diciembre de 2020): 2715. http://dx.doi.org/10.3390/cells9122715.
Texto completoCharles, Julia, Lih-Yun Hsu, Erene Niemi, Arthur Weiss y Mary Nakamura. "CD11blo Gr1+ osteoclast precursors are increased in inflammatory arthritis and have myeloid derived suppressor cell function. (148.1)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 148.1. http://dx.doi.org/10.4049/jimmunol.186.supp.148.1.
Texto completoAykut, Berk, Ruonan Chen, Jacqueline I. Kim, Dongling Wu, Sorin A. A. Shadaloey, Raquel Abengozar, Pamela Preiss et al. "Targeting Piezo1 unleashes innate immunity against cancer and infectious disease". Science Immunology 5, n.º 50 (21 de agosto de 2020): eabb5168. http://dx.doi.org/10.1126/sciimmunol.abb5168.
Texto completoTakacs, Gregory P., Julia S. Garcia, Caitlyn A. Hodges, Christian J. Kreiger, Alexandra Sherman y Jeffrey K. Harrison. "CSF1R Ligands Expressed by Murine Gliomas Promote M-MDSCs to Suppress CD8+ T Cells in a NOS-Dependent Manner". Cancers 16, n.º 17 (1 de septiembre de 2024): 3055. http://dx.doi.org/10.3390/cancers16173055.
Texto completoRajan, Priyanka, Robert Zollo, Mackenzie Lieberman, Yanqi Guo, Mohammed Alruwaili, Mohammed Alqarni, Brian Morreale et al. "Abstract 5536: The role of p38 MAPK in the tumor-induced immune suppressive microenvironment in metastatic breast cancer". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 5536. http://dx.doi.org/10.1158/1538-7445.am2024-5536.
Texto completoWieboldt, Ronja, Andreas Zingg, Emanuele Carlini, Anastasiya Börsch, Heinz Läubli y Natalia Rodrigues Manutano. "Abstract 1259: Disturbing the Siglec-Sialoglycan axis to target myeloid- derived suppressor cells in the tumor microenvironment". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 1259. http://dx.doi.org/10.1158/1538-7445.am2023-1259.
Texto completoAntignano, Frann, Melisa Hamilton, Carla Cohen, Victor Ho y Gerald Krystal. "SHIP-deficient dendritic cells suppress T cell proliferation via a nitric oxide independent mechanism (91.9)". Journal of Immunology 182, n.º 1_Supplement (1 de abril de 2009): 91.9. http://dx.doi.org/10.4049/jimmunol.182.supp.91.9.
Texto completoCornelissen, Lenneke A. M., Kim C. M. Santegoets, Esther D. Kers-Rebel, Sandra A. J. F. H. Bossmann, Mark Ter Laan, Daniel Granado y Gosse J. Adema. "Glioma-Associated Sialoglycans Drive the Immune Suppressive Phenotype and Function of Myeloid Cells". Pharmaceutics 16, n.º 7 (19 de julio de 2024): 953. http://dx.doi.org/10.3390/pharmaceutics16070953.
Texto completoRui, Ke, Jie Tian, Yue Hong, Liwei Lu y Shengjun Wang. "Olfactory ecto-mesenchymal stem cells derived exosomes reverse the immunosuppressive capacity of myeloid-derived suppressor cells to ameliorates experimental Sjögren’s syndrome". Journal of Immunology 204, n.º 1_Supplement (1 de mayo de 2020): 238.11. http://dx.doi.org/10.4049/jimmunol.204.supp.238.11.
Texto completoSchroeder, Mark A., Julie Ritchey, Brian K. Dieckgraefe y John F. DiPersio. "Pegylated Murine GM-CSF Increases Myeloid Derived Suppressor Cells In Vivo". Blood 118, n.º 21 (18 de noviembre de 2011): 2967. http://dx.doi.org/10.1182/blood.v118.21.2967.2967.
Texto completoVance, Jordan K., Travis W. Rawson, Jessica M. Povroznik, Kathleen M. Brundage y Cory M. Robinson. "Myeloid-Derived Suppressor Cells Gain Suppressive Function during Neonatal Bacterial Sepsis". International Journal of Molecular Sciences 22, n.º 13 (30 de junio de 2021): 7047. http://dx.doi.org/10.3390/ijms22137047.
Texto completoShen, Li y Roberto Pili. "Tasquinimod targets suppressive myeloid cells in the tumor microenvironment". OncoImmunology 8, n.º 10 (7 de mayo de 2018): e1072672. http://dx.doi.org/10.1080/2162402x.2015.1072672.
Texto completoKumar, Vishnupriyan, Michael A. Giacomantonio y Shashi Gujar. "Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy". Viruses 13, n.º 4 (10 de abril de 2021): 654. http://dx.doi.org/10.3390/v13040654.
Texto completoAbdelfattah, Nourhan, Parveen Kumar, Caiyi Wang, Jia-Shiun Leu, David Baskin, William Flynn, Ruli Gao et al. "Abstract 5871: Pan-cancer myeloid cell analysis at the single cell level reveals the influence of distinct organ sites in myeloid cell phenotypes and support targeting S100A4 to reverse immune suppression". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 5871. http://dx.doi.org/10.1158/1538-7445.am2023-5871.
Texto completoAnderson, Hannah, Gregory P. Takacs, Christian Kreiger, Defang Luo, Libin Rong, Jeffrey K. Harrison y Tracy Stepien. "209 A CTS Team Approach to Modeling Migration and Suppression of CCR2+/CX3CR1+ Myeloid Cells in Glioblastoma". Journal of Clinical and Translational Science 6, s1 (abril de 2022): 32. http://dx.doi.org/10.1017/cts.2022.111.
Texto completoPeñaloza, Hernán F., Janet S. Lee y Prabir Ray. "Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease". PLOS Pathogens 17, n.º 9 (2 de septiembre de 2021): e1009850. http://dx.doi.org/10.1371/journal.ppat.1009850.
Texto completoParker, Katherine y Suzanne Ostrand-Osenberg. "Title: HMGB1 both enhances and blocks myeloid-derived suppressor cell potency Katherine H. Parker, Suzanne Ostrand-Rosenberg Department of Biological Sciences, University of Maryland Baltimore County, Baltimore MD 21250 (162.40)". Journal of Immunology 188, n.º 1_Supplement (1 de mayo de 2012): 162.40. http://dx.doi.org/10.4049/jimmunol.188.supp.162.40.
Texto completoDing, Xinchun, Lingyan Wu, Cong Yan y Hong Du. "Establishment of lal-/- Myeloid Lineage Cell Line That Resembles Myeloid-Derived Suppressive Cells". PLOS ONE 10, n.º 3 (25 de marzo de 2015): e0121001. http://dx.doi.org/10.1371/journal.pone.0121001.
Texto completoWang, Xiang-Yang, Huanfa Yi, Chunqing Guo y Xiaofei Yu. "Myeloid-derived suppressive cells enhance differentiation of Th17 cells in an IL-1β dependent manner (P1096)". Journal of Immunology 190, n.º 1_Supplement (1 de mayo de 2013): 185.22. http://dx.doi.org/10.4049/jimmunol.190.supp.185.22.
Texto completoHou, Yu, Qi Feng, Miao Xu, Guo-sheng Li, Xue-na Liu, Zi Sheng, Hai Zhou et al. "High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia". Blood 127, n.º 12 (24 de marzo de 2016): 1587–97. http://dx.doi.org/10.1182/blood-2015-10-674531.
Texto completoMiner, Samantha, Sawa Ito, Kazushi Tanimoto, Nancy F. Hensel, Fariba Chinian, Keyvan Keyvanfar, Christopher S. Hourigan et al. "Myeloid Leukemias Directly Suppress T Cell Proliferation Through STAT3 and Arginase Pathways". Blood 122, n.º 21 (15 de noviembre de 2013): 3885. http://dx.doi.org/10.1182/blood.v122.21.3885.3885.
Texto completoGriesinger, Andrea, Eric Prince, Andrew Donson, Kent Riemondy, Timothy Ritzman, Faith Harris, Vladimir Amani et al. "EPEN-22. SINGLE-CELL RNA SEQUENCING IDENTIFIES UPREGULATION OF IKZF1 IN PFA2 MYELOID SUBPOPULATION DRIVING AN ANTI-TUMOR PHENOTYPE". Neuro-Oncology 22, Supplement_3 (1 de diciembre de 2020): iii312. http://dx.doi.org/10.1093/neuonc/noaa222.159.
Texto completoYao, G., S. Wang y L. Sun. "THU0226 MESENCHYMAL STEM CELL TRANSPLANTATION AMELIORATES EXPERIMENTAL SJÖGREN’S SYNDROME BY DOWNREGUALTING MDSCS VIA COX2/PGE2 PATHWAY". Annals of the Rheumatic Diseases 79, Suppl 1 (junio de 2020): 340.1–340. http://dx.doi.org/10.1136/annrheumdis-2020-eular.1391.
Texto completoSolito, Samantha, Erika Falisi, Claudia Marcela Diaz-Montero, Andrea Doni, Laura Pinton, Antonio Rosato, Samuela Francescato et al. "A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells". Blood 118, n.º 8 (25 de agosto de 2011): 2254–65. http://dx.doi.org/10.1182/blood-2010-12-325753.
Texto completoOhayon, David E., Taylor R. Brooks, Sarah E. Mahl, Stacey A. Cranert y Stephen N. Waggoner. "Natural killer cells support myeloid suppressor cell expansion during persistent viral infection". Journal of Immunology 198, n.º 1_Supplement (1 de mayo de 2017): 78.36. http://dx.doi.org/10.4049/jimmunol.198.supp.78.36.
Texto completoVakana, Eliza, Jessica K. Altman, Heather Glaser, Nicholas J. Donato y Leonidas C. Platanias. "Antileukemic effects of AMPK activators on BCR-ABL–expressing cells". Blood 118, n.º 24 (8 de diciembre de 2011): 6399–402. http://dx.doi.org/10.1182/blood-2011-01-332783.
Texto completoPeretz, Tsuri, Yoav Pizem, Liat Iancovici, Ella Peled, Motti Hakim, Sharon Hashmueli, Ilana Mandel, Yair Sapir y Tehila Ben Moshe. "Abstract 3920: BND-35, a novel anti-ILT3 antibody for remodulation of the tumor microenvironment". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 3920. http://dx.doi.org/10.1158/1538-7445.am2024-3920.
Texto completoGood, Logan, Brooke Benner y William E. Carson. "Bruton’s tyrosine kinase: an emerging targeted therapy in myeloid cells within the tumor microenvironment". Cancer Immunology, Immunotherapy 70, n.º 9 (5 de abril de 2021): 2439–51. http://dx.doi.org/10.1007/s00262-021-02908-5.
Texto completoGriesinger, Andrea, Kent Riemondy, Andrew Donson, Nicholas Willard, Eric Prince, Faith Harris, Vladimir Amani et al. "EPEN-07. SINGLE-CELL RNA SEQUENCING IDENTIFIES A UNIQUE MYELOID SUBPOPULATION ASSOCIATED WITH MESENCHYMAL TUMOR SUBPOPULATION IN POOR OUTCOME PEDIATRIC EPENDYMOMA". Neuro-Oncology 23, Supplement_1 (1 de junio de 2021): i14—i15. http://dx.doi.org/10.1093/neuonc/noab090.057.
Texto completo