Literatura académica sobre el tema "Superquantiles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Superquantiles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Superquantiles"
Rio, Emmanuel. "Upper bounds for superquantiles of martingales". Comptes Rendus. Mathématique 359, n.º 7 (17 de septiembre de 2021): 813–22. http://dx.doi.org/10.5802/crmath.207.
Texto completoLaguel, Yassine, Krishna Pillutla, Jérôme Malick y Zaid Harchaoui. "Superquantiles at Work: Machine Learning Applications and Efficient Subgradient Computation". Set-Valued and Variational Analysis 29, n.º 4 (diciembre de 2021): 967–96. http://dx.doi.org/10.1007/s11228-021-00609-w.
Texto completoKala, Zdeněk. "Global Sensitivity Analysis of Quantiles: New Importance Measure Based on Superquantiles and Subquantiles". Symmetry 13, n.º 2 (4 de febrero de 2021): 263. http://dx.doi.org/10.3390/sym13020263.
Texto completoDedecker, Jérôme y Florence Merlevède. "Central limit theorem and almost sure results for the empirical estimator of superquantiles/CVaR in the stationary case". Statistics 56, n.º 1 (2 de enero de 2022): 53–72. http://dx.doi.org/10.1080/02331888.2022.2043325.
Texto completoMafusalov, Alexander y Stan Uryasev. "CVaR (superquantile) norm: Stochastic case". European Journal of Operational Research 249, n.º 1 (febrero de 2016): 200–208. http://dx.doi.org/10.1016/j.ejor.2015.09.058.
Texto completoRockafellar, R. Tyrrell y Johannes O. Royset. "Superquantile/CVaR risk measures: second-order theory". Annals of Operations Research 262, n.º 1 (9 de febrero de 2016): 3–28. http://dx.doi.org/10.1007/s10479-016-2129-0.
Texto completoLaguel, Yassine, Jérôme Malick y Zaid Harchaoui. "Superquantile-Based Learning: A Direct Approach Using Gradient-Based Optimization". Journal of Signal Processing Systems 94, n.º 2 (11 de enero de 2022): 161–77. http://dx.doi.org/10.1007/s11265-021-01716-5.
Texto completoRockafellar, R. T., J. O. Royset y S. I. Miranda. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk". European Journal of Operational Research 234, n.º 1 (abril de 2014): 140–54. http://dx.doi.org/10.1016/j.ejor.2013.10.046.
Texto completoGolodnikov, Kuzmenko y Uryasev. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles". Journal of Risk and Financial Management 12, n.º 3 (26 de junio de 2019): 107. http://dx.doi.org/10.3390/jrfm12030107.
Texto completoLabopin-Richard, T., F. Gamboa, A. Garivier y B. Iooss. "Bregman superquantiles. Estimation methods and applications". Dependence Modeling 4, n.º 1 (11 de marzo de 2016). http://dx.doi.org/10.1515/demo-2016-0004.
Texto completoTesis sobre el tema "Superquantiles"
Thurin, Gauthier. "Quantiles multivariés et transport optimal régularisé". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Texto completoThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Miranda, Sofia I. "Superquantile regression: theory, algorithms, and applications". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44618.
Texto completoWe present a novel regression framework centered on a coherent and averse measure of risk, the superquantile risk (also called conditional value-at-risk), which yields more conservatively fitted curves than classical least squares and quantile regressions. In contracts to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and inperfect analog to classical regressional obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared and Cook’s distance for assessing the goodness of fit for both quantile and superquantile regression models. We present two classes of computational methods for solving the superquantile regression problem, compare both methods’ complexity, and illustrate the methodology in eight numerical examples in the areas of military applications, concerning mission employment of U.S. Navy helicopter pilots and Portuguese Navy submarines, reliability engineering, uncertainty quantification, and financial risk management.
Capítulos de libros sobre el tema "Superquantiles"
Miranda, Sofia Isabel. "Applying Superquantile Regression to a Real-World Problem: Submariners Effort Index Analysis". En Studies in Big Data, 115–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24154-8_14.
Texto completoRockafellar, R. Tyrrell y Johannes O. Royset. "Superquantiles and Their Applications to Risk, Random Variables, and Regression". En Theory Driven by Influential Applications, 151–67. INFORMS, 2013. http://dx.doi.org/10.1287/educ.2013.0111.
Texto completoActas de conferencias sobre el tema "Superquantiles"
Laguel, Yassine, Jerome Malick y Zaid Harchaoui. "First-Order Optimization for Superquantile-Based Supervised Learning". En 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020. http://dx.doi.org/10.1109/mlsp49062.2020.9231909.
Texto completoLaguel, Yassine, Krishna Pillutla, Jerome Malick y Zaid Harchaoui. "A Superquantile Approach to Federated Learning with Heterogeneous Devices". En 2021 55th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2021. http://dx.doi.org/10.1109/ciss50987.2021.9400318.
Texto completoInformes sobre el tema "Superquantiles"
Rockafellar, R. T. y Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, julio de 2014. http://dx.doi.org/10.21236/ada615948.
Texto completoRockafellar, R. T. y Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, julio de 2015. http://dx.doi.org/10.21236/ada627217.
Texto completo