Artículos de revistas sobre el tema "Superglasse"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Superglasse.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 18 mejores artículos de revistas para su investigación sobre el tema "Superglasse".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Ameen, Ahmed W., Peter M. Budd y Patricia Gorgojo. "Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?" Membranes 10, n.º 12 (10 de diciembre de 2020): 413. http://dx.doi.org/10.3390/membranes10120413.

Texto completo
Resumen
Superglassy polymers have emerged as potential membrane materials for several gas separation applications, including acid gas removal from natural gas. Despite the superior performance shown at laboratory scale, their use at industrial scale is hampered by their large drop in gas permeability over time due to physical aging. Several strategies are proposed in the literature to prevent loss of performance, the incorporation of fillers being a successful approach. In this work, we provide a comprehensive economic study on the application of superglassy membranes in a hybrid membrane/amine process for natural gas sweetening. The hybrid process is compared with the more traditional stand-alone amine-absorption technique for a range of membrane gas separation properties (CO2 permeance and CO2/CH4 selectivity), and recommendations for long-term membrane performance are made. These recommendations can drive future research on producing mixed matrix membranes (MMMs) of superglassy polymers with anti-aging properties (i.e., target permeance and selectivity is maintained over time), as thin film nanocomposite membranes (TFNs). For the selected natural gas composition of 28% of acid gas content (8% CO2 and 20% H2S), we have found that a CO2 permeance of 200 GPU and a CO2/CH4 selectivity of 16 is an optimal target.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kleemann, Wolfgang y Jan Dec. "Relaxor ferroelectrics and related superglasses". Ferroelectrics 553, n.º 1 (10 de diciembre de 2019): 1–7. http://dx.doi.org/10.1080/00150193.2019.1683489.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hunt, B., E. Pratt, V. Gadagkar, M. Yamashita, A. V. Balatsky y J. C. Davis. "Evidence for a Superglass State in Solid 4He". Science 324, n.º 5927 (30 de abril de 2009): 632–36. http://dx.doi.org/10.1126/science.1169512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Golemme, Gianni, Andrea Bruno, Raffaella Manes y Daniela Muoio. "Preparation and properties of superglassy polymers — zeolite mixed matrix membranes". Desalination 200, n.º 1-3 (noviembre de 2006): 440–42. http://dx.doi.org/10.1016/j.desal.2006.03.396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Andrady, Anthony L., Timothy C. Merkel y Lora G. Toy. "Effect of Particle Size on Gas Permeability of Filled Superglassy Polymers". Macromolecules 37, n.º 11 (junio de 2004): 4329–31. http://dx.doi.org/10.1021/ma049510u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kleemann, Wolfgang y Jan Dec. "Ferroic superglasses: Relaxor ferroelectrics PMN and SBN vs. CoFe superspin glass". Ferroelectrics 534, n.º 1 (3 de octubre de 2018): 1–10. http://dx.doi.org/10.1080/00150193.2018.1473454.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Muzzi, Chiara, Alessio Fuoco, Marcello Monteleone, Elisa Esposito, Johannes C. Jansen y Elena Tocci. "Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation". Membranes 10, n.º 11 (5 de noviembre de 2020): 328. http://dx.doi.org/10.3390/membranes10110328.

Texto completo
Resumen
Global warming by greenhouse gas emissions is one of the main threats of our modern society, and efficient CO2 capture processes are needed to solve this problem. Membrane separation processes have been identified among the most promising technologies for CO2 capture, and these require the development of highly efficient membrane materials which, in turn, requires detailed understanding of their operation mechanism. In the last decades, molecular modeling studies have become an extremely powerful tool to understand and anticipate the gas transport properties of polymeric membranes. This work presents a study on the correlation of the structural features of different membrane materials, analyzed by means of molecular dynamics simulation, and their gas diffusivity/selectivity. We propose a simplified method to determine the void size distribution via an automatic image recognition tool, along with a consolidated Connolly probe sensing of space, without the need of demanding computational procedures. Based on a picture of the void shape and width, automatic image recognition tests the dimensions of the void elements, reducing them to ellipses. Comparison of the minor axis of the obtained ellipses with the diameters of the gases yields a qualitative estimation of non-accessible paths in the geometrical arrangement of polymeric chains. A second tool, the Connolly probe sensing of space, gives more details on the complexity of voids. The combination of the two proposed tools can be used for a qualitative and rapid screening of material models and for an estimation of the trend in their diffusivity selectivity. The main differences in the structural features of three different classes of polymers are investigated in this work (glassy polymers, superglassy perfluoropolymers and high free volume polymers of intrinsic microporosity), and the results show how the proposed computationally less demanding analysis can be linked with their selectivities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Boninsegni, Massimo, Nikolay Prokof’ev y Boris Svistunov. "Superglass Phase ofHe4". Physical Review Letters 96, n.º 10 (16 de marzo de 2006). http://dx.doi.org/10.1103/physrevlett.96.105301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Larson, Derek y Ying-Jer Kao. "Tuning the Disorder in Superglasses". Physical Review Letters 109, n.º 15 (9 de octubre de 2012). http://dx.doi.org/10.1103/physrevlett.109.157202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yu, Xiaoquan y Markus Müller. "Mean field theory of superglasses". Physical Review B 85, n.º 10 (19 de marzo de 2012). http://dx.doi.org/10.1103/physrevb.85.104205.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Biroli, Giulio, Claudio Chamon y Francesco Zamponi. "Theory of the superglass phase". Physical Review B 78, n.º 22 (8 de diciembre de 2008). http://dx.doi.org/10.1103/physrevb.78.224306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Tam, Ka-Ming, Scott Geraedts, Stephen Inglis, Michel J. P. Gingras y Roger G. Melko. "Superglass Phase of Interacting Bosons". Physical Review Letters 104, n.º 21 (25 de mayo de 2010). http://dx.doi.org/10.1103/physrevlett.104.215301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Gordillo, M. C. y J. Boronat. "H2 superglass on an amorphous carbon substrate". Physical Review B 107, n.º 6 (23 de febrero de 2023). http://dx.doi.org/10.1103/physrevb.107.l060505.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hertkorn, J., J. N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng, S. D. Graham, P. Uerlings, T. Langen, M. Zwierlein y T. Pfau. "Pattern formation in quantum ferrofluids: From supersolids to superglasses". Physical Review Research 3, n.º 3 (6 de agosto de 2021). http://dx.doi.org/10.1103/physrevresearch.3.033125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Angelone, Adriano, Fabio Mezzacapo y Guido Pupillo. "Superglass Phase of Interaction-Blockaded Gases on a Triangular Lattice". Physical Review Letters 116, n.º 13 (1 de abril de 2016). http://dx.doi.org/10.1103/physrevlett.116.135303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Piekarska, Anna M. y Tadeusz K. Kopeć. "Emergence of a superglass phase in the random-hopping Bose-Hubbard model". Physical Review B 105, n.º 17 (10 de mayo de 2022). http://dx.doi.org/10.1103/physrevb.105.174203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Kleemann, Wolfgang y Jan Dec. "Ferroic superglasses: Polar nanoregions in relaxor ferroelectric PMN versus CoFe superspins in a discontinuous multilayer". Physical Review B 94, n.º 17 (18 de noviembre de 2016). http://dx.doi.org/10.1103/physrevb.94.174203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Almansour, Faiz, Monica Alberto, Andrew B. Foster, Sajjad Mohsenpour, Peter Martin Budd y Patricia Gorgojo. "Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation". Journal of Materials Chemistry A, 2022. http://dx.doi.org/10.1039/d2ta06339e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía