Artículos de revistas sobre el tema "Superdense coding"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Superdense coding.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Superdense coding".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

SHANG-GUAN, LI-YING, HONG-XIANG SUN, XIU-BO CHEN, HENG-YUE JIA, QIAO-YAN WEN y FU-CHEN ZHU. "PERFECT TELEPORTATION, SUPERDENSE CODING VIA A KIND OF W-CLASS STATE". International Journal of Quantum Information 08, n.º 08 (diciembre de 2010): 1411–20. http://dx.doi.org/10.1142/s0219749910006964.

Texto completo
Resumen
Perfect teleportation and superdense coding are discussed via a special kind of W-state. It is shown that the state can be used for perfect teleportation of the state x|0〉⊗N + y|1〉⊗N. And the state can be utilized for superdense coding. Moreover, it is demonstrated that the sender can transmit N classical bits to the receiver by sending N − 1 qubits.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Abeyesinghe, A., P. Hayden, G. Smith y A. J. Winter. "Optimal Superdense Coding of Entangled States". IEEE Transactions on Information Theory 52, n.º 8 (agosto de 2006): 3635–41. http://dx.doi.org/10.1109/tit.2006.878174.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yang, Wei, Liusheng Huang, An Liu, Miaomiao Tian y Haibo Miao. "Quantum–classical hybrid quantum superdense coding". Physica Scripta 88, n.º 1 (25 de junio de 2013): 015009. http://dx.doi.org/10.1088/0031-8949/88/01/015009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tao, Qin, Feng Mang y Gao Ke-Lin. "Superdense Coding via Hot Trapped Ions". Communications in Theoretical Physics 41, n.º 6 (15 de junio de 2004): 871–74. http://dx.doi.org/10.1088/0253-6102/41/6/871.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Dunningham, Jacob A. "Superdense coding with single-particle entanglement". Journal of Russian Laser Research 30, n.º 5 (septiembre de 2009): 427–34. http://dx.doi.org/10.1007/s10946-009-9101-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhao, Rui-Tong, Qi Guo, Li Chen, Hong-Fu Wang y Shou Zhang. "Quantum superdense coding based on hyperentanglement". Chinese Physics B 21, n.º 8 (agosto de 2012): 080303. http://dx.doi.org/10.1088/1674-1056/21/8/080303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Farahmand, Mehrnoosh, Hosein Mohammadzadeh, Hossein Mehri-Dehnavi y Robabeh Rahimi. "Superdense Coding with Uniformly Accelerated Particle". International Journal of Theoretical Physics 56, n.º 3 (12 de diciembre de 2016): 706–19. http://dx.doi.org/10.1007/s10773-016-3212-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhou, You-Sheng, Feng Wang y Ming-Xing Luo. "Efficient Superdense Coding with W States". International Journal of Theoretical Physics 57, n.º 7 (20 de marzo de 2018): 1935–41. http://dx.doi.org/10.1007/s10773-018-3718-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Yan–Ling, Dong–Mei Wei, Chuan–Jin Zu y Xing Xiao. "Enhanced Superdense Coding Over Correlated Amplitude Damping Channel". Entropy 21, n.º 6 (16 de junio de 2019): 598. http://dx.doi.org/10.3390/e21060598.

Texto completo
Resumen
Quantum channels with correlated effects are realistic scenarios for the study of noisy quantum communication when the channels are consecutively used. In this paper, superdense coding is reexamined under a correlated amplitude damping (CAD) channel. Two techniques named as weak measurement and environment-assisted measurement are utilized to enhance the capacity of superdense coding. The results show that both of them enable us to battle against the CAD decoherence and improve the capacity with a certain probability. Remarkably, the scheme of environment-assisted measurement always outperforms the scheme of weak measurement in both improving the capacity and successful probability. These notable superiorities could be attributed to the fact that environment-assisted measurement can extract additional information from the environment and thus it performs much better.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Guo-Zhu, Pan, Yang Ming y Cao Zhuo-Liang. "Quantum superdense coding via cavity-assisted interactions". Chinese Physics B 18, n.º 6 (junio de 2009): 2319–23. http://dx.doi.org/10.1088/1674-1056/18/6/034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

PAVIČIĆ, MLADEN. "ENTANGLEMENT AND SUPERDENSE CODING WITH LINEAR OPTICS". International Journal of Quantum Information 09, n.º 07n08 (octubre de 2011): 1737–44. http://dx.doi.org/10.1142/s0219749911008222.

Texto completo
Resumen
We discuss a scheme for a full superdense coding of entangled photon states employing only linear optics elements. By using the mixed basis consisting of four states that are unambiguously distinguishable by a standard and polarizing beam splitters we can deterministically transfer four messages by manipulating just one of the two entangled photons. The sender achieves the determinism of the transfer either by giving up the control over 50% of sent messages (although known to her) or by discarding 33% of incoming photons.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Pavičić, Mladen. "Deterministic mediated superdense coding with linear optics". Physics Letters A 380, n.º 7-8 (febrero de 2016): 848–55. http://dx.doi.org/10.1016/j.physleta.2015.12.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Farahmand, Mehrnoosh y Hosein Mohammadzadeh. "Challenges of Superdense Coding with Accelerated Fermions". Universal Journal of Physics and Application 11, n.º 5 (octubre de 2017): 139–43. http://dx.doi.org/10.13189/ujpa.2017.110501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Rahimi, Robabeh, Kazuyuki Takeda, Masanao Ozawa y Masahiro Kitagawa. "Entanglement witness derived from NMR superdense coding". Journal of Physics A: Mathematical and General 39, n.º 9 (15 de febrero de 2006): 2151–59. http://dx.doi.org/10.1088/0305-4470/39/9/011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Timchenko, Bogdan A., Maria P. Faleeva, Pavel A. Gilev, Irina V. Blinova y Igor Yu Popov. "Atmospheric implementation of superdense coding quantum algorithm". Physics of Complex Systems 3, n.º 4 (2022): 186–201. http://dx.doi.org/10.33910/2687-153x-2022-3-4-186-201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Imre, Sándor. "Modified quantum superdense coding for distributed communications". International Journal of Communication Systems 29, n.º 2 (25 de julio de 2014): 417–23. http://dx.doi.org/10.1002/dac.2841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

WANG, XIN, YI-MIN LIU, LIAN-FANG HAN y ZHAN-JUN ZHANG. "MULTIPARTY QUANTUM SECRET SHARING OF SECURE DIRECT COMMUNICATION WITH HIGH-DIMENSIONAL QUANTUM SUPERDENSE CODING". International Journal of Quantum Information 06, n.º 06 (diciembre de 2008): 1155–63. http://dx.doi.org/10.1142/s0219749908004341.

Texto completo
Resumen
The first protocol of multiparty quantum secret sharing of secure direct communication [Phys. Lett. A342 (2005) 60] is generalized to the high-dimensional case via quantum superdense coding. The generalized protocol has the advantages of higher capacity and better security.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

WEI, Daxiu. "NMR experimental implementation of three-parties quantum superdense coding". Chinese Science Bulletin 49, n.º 5 (2004): 423. http://dx.doi.org/10.1360/03ww0149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Huai-Zhi, Wu, Yang Zhen-Biao y Zheng Shi-Biao. "Quantum Teleportation and Superdense Coding via W-Class States". Communications in Theoretical Physics 49, n.º 4 (abril de 2008): 901–4. http://dx.doi.org/10.1088/0253-6102/49/4/20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Wei, Daxiu, Xiaodong Yang, Jun Luo, Xianping Sun, Xizhi Zeng y Maili Liu. "NMR experimental implementation of three-parties quantum superdense coding". Chinese Science Bulletin 49, n.º 5 (marzo de 2004): 423–26. http://dx.doi.org/10.1007/bf02900957.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Chakrabarty, Indranil, Pankaj Agrawal y Arun K. Pati. "Locally unextendible non-maximally entangled basis". Quantum Information and Computation 12, n.º 3&4 (marzo de 2012): 271–82. http://dx.doi.org/10.26421/qic12.3-4-7.

Texto completo
Resumen
We introduce the concept of the locally unextendible non-maximally entangled basis (LUNMEB) in H^d \bigotimes H^d. It is shown that such a basis consists of d orthogonal vectors for a non-maximally entangled state. However, there can be a maximum of (d-1)^2 orthogonal vectors for non-maximally entangled state if it is maximally entangled in (d-1) dimensional subspace. Such a basis plays an important role in determining the number of classical bits that one can send in a superdense coding protocol using a non-maximally entangled state as a resource. By constructing appropriate POVM operators, we find that the number of classical bits one can transmit using a non-maximally entangled state as a resource is (1+p_0\frac{d}{d-1})\log d, where p_0 is the smallest Schmidt coefficient. However, when the state is maximally entangled in its subspace then one can send up to 2\log (d-1) bits. We also find that for d= 3, former may be more suitable for the superdense coding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Barreiro, Julio T., Tzu-Chieh Wei y Paul G. Kwiat. "Beating the channel capacity limit for linear photonic superdense coding". Nature Physics 4, n.º 4 (23 de marzo de 2008): 282–86. http://dx.doi.org/10.1038/nphys919.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Bin, Gu, Li Chuan-Qi, Xu Fei y Chen Yu-Lin. "High-capacity three-party quantum secret sharing with superdense coding". Chinese Physics B 18, n.º 11 (noviembre de 2009): 4690–94. http://dx.doi.org/10.1088/1674-1056/18/11/013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gün, Ahmet y Azmi Gençten. "Quantum Superdense Coding for Three and Four-Qubit Entangled States". Advanced Science, Engineering and Medicine 5, n.º 11 (1 de noviembre de 2013): 1209–15. http://dx.doi.org/10.1166/asem.2013.1364.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lin, Qing, Jian Li y Guang Can Guo. "Experimental proposal of probabilistic superdense coding with linear optical elements". Journal of Physics B: Atomic, Molecular and Optical Physics 39, n.º 17 (29 de agosto de 2006): 3649–54. http://dx.doi.org/10.1088/0953-4075/39/17/020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Wu, Qiong y Ming Yang. "Quantum Superdense Coding Based on Coherent States in Cavity QED". International Journal of Theoretical Physics 47, n.º 12 (23 de abril de 2008): 3139–43. http://dx.doi.org/10.1007/s10773-008-9747-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Liu, Bi-Heng, Xiao-Min Hu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, Antti Karlsson, Elsi-Mari Laine, Sabrina Maniscalco, Chiara Macchiavello y Jyrki Piilo. "Efficient superdense coding in the presence of non-Markovian noise". EPL (Europhysics Letters) 114, n.º 1 (1 de abril de 2016): 10005. http://dx.doi.org/10.1209/0295-5075/114/10005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Domínguez-Serna, Francisco y Fernando Rojas. "Quantum control using genetic algorithms in quantum communication: superdense coding". Journal of Physics: Conference Series 624 (26 de junio de 2015): 012009. http://dx.doi.org/10.1088/1742-6596/624/1/012009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Da-Zu, Huang, Guo Ying y Zeng Gui-Hua. "Quantum Secure Direct Intercommunication with Superdense Coding and Entanglement Swapping". Communications in Theoretical Physics 50, n.º 6 (diciembre de 2008): 1290–94. http://dx.doi.org/10.1088/0253-6102/50/6/08.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Huang, Yi-Bin y Guo-Gui Chen. "Superdense Coding with Multi-particle GHZ State via Local Measurement". International Journal of Theoretical Physics 51, n.º 6 (10 de febrero de 2012): 1970–77. http://dx.doi.org/10.1007/s10773-012-1075-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Niu, Xu-Feng, Wen-Ping Ma, Bu-Qing Chen, Ge Liu y Qi-Zheng Wang. "A Quantum Proxy Blind Signature Scheme Based on Superdense Coding". International Journal of Theoretical Physics 59, n.º 4 (28 de enero de 2020): 1121–28. http://dx.doi.org/10.1007/s10773-020-04393-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

RAHIMI, ROBABEH, KAZUNOBU SATO, KOU FURUKAWA, KAZUO TOYOTA, DAISUKE SHIOMI, TOSHIHIRO NAKAMURA, MASAHIRO KITAGAWA y TAKEJI TAKUI. "PULSED ENDOR-BASED QUANTUM INFORMATION PROCESSING". International Journal of Quantum Information 03, supp01 (noviembre de 2005): 197–204. http://dx.doi.org/10.1142/s0219749905001377.

Texto completo
Resumen
Pulsed Electron Nuclear DOuble Resonance (pulsed ENDOR) has been studied for realization of quantum algorithms, emphasizing the implementation of organic molecular entities with an electron spin and a nuclear spin for quantum information processing. The scheme has been examined in terms of quantum information processing. Particularly, superdense coding has been implemented from the experimental side and the preliminary results are represented as theoretical expectations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

HUANG Ping-Wu, 黄平武, 周萍 ZHOU Ping, 农亮勤 NONG Liang-Qin, 何良明 HE Liang-min y 尹彩流 YIN Cai-Liu. "Quantum Superdense Coding Scheme Based on High-dimensional Two-particles System". ACTA PHOTONICA SINICA 40, n.º 5 (2011): 780–84. http://dx.doi.org/10.3788/gzxb20114005.0780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Deng, Fu-Guo, Xi-Han Li, Chun-Yan Li, Ping Zhou y Hong-Yu Zhou. "Quantum secure direct communication network with superdense coding and decoy photons". Physica Scripta 76, n.º 1 (1 de junio de 2007): 25–30. http://dx.doi.org/10.1088/0031-8949/76/1/005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

QIU, DAOWEN. "A SUFFICIENT AND NECESSARY CONDITION FOR SUPERDENSE CODING OF QUANTUM STATES". International Journal of Quantum Information 06, n.º 05 (octubre de 2008): 1115–25. http://dx.doi.org/10.1142/s0219749908004298.

Texto completo
Resumen
Recently, Harrow et al. [Phys. Rev. Lett.92 (2004) 187901] gave a method for preparing an arbitrary quantum state with high success probability by physically transmitting some qubits, and by consuming a maximally entangled state, together with exhausting some shared random bits. In this paper, we discover that some states are impossible to be perfectly prepared by Alice and Bob initially sharing some entangled states. In particular, we present a sufficient and necessary condition for the states being enabled to be exactly prepared with probability equal to unity, in terms of the initial entangled states (maybe nonmaximally). In contrast, if the initially shared entanglement is maximal, then the probabilities for preparing these quantum states are smaller than unity. Furthermore, the lower bound on the probability for preparing some states are derived.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Barreiro, Julio T., Tzu-Chieh Wei y Paul G. Kwiat. "Erratum: Beating the channel capacity limit for linear photonic superdense coding". Nature Physics 4, n.º 8 (agosto de 2008): 662. http://dx.doi.org/10.1038/nphys1039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Zhi-hua, Lan Shu y Zhi-wen Mo. "Quantum teleportation and superdense coding through the composite W-Bell channel". Quantum Information Processing 12, n.º 5 (7 de noviembre de 2012): 1957–67. http://dx.doi.org/10.1007/s11128-012-0504-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Hu, Xiao-Min, Yu Guo, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li y Guang-Can Guo. "Beating the channel capacity limit for superdense coding with entangled ququarts". Science Advances 4, n.º 7 (julio de 2018): eaat9304. http://dx.doi.org/10.1126/sciadv.aat9304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Qing, Lin. "The generation of Entangled Qudits and their Application in Probabilistic Superdense Coding". Chinese Physics Letters 26, n.º 4 (31 de marzo de 2009): 040301. http://dx.doi.org/10.1088/0256-307x/26/4/040301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

ZHOU Rui, 周锐, 朱玉兰 ZHU Yu-lan y 聂义友 NIE Yi-you. "One-way Communication Scheme Based on Superdense Coding of Four Dimension Two Particles". ACTA PHOTONICA SINICA 39, n.º 1 (2010): 156–59. http://dx.doi.org/10.3788/gzxb20103901.0156.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Jun, Jin Woo. "Squeezing Effect on the Superdense Coding through aGeneralized Amplitude Damping Multi-Qubit Channel". Journal of the Korean Physical Society 56, n.º 1 (15 de enero de 2010): 10–14. http://dx.doi.org/10.3938/jkps.56.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Jia, Tan y Fang Mao-Fa. "Protocol for multi-party superdense coding by using multi-atom in cavity QED". Chinese Physics 15, n.º 8 (26 de julio de 2006): 1695–99. http://dx.doi.org/10.1088/1009-1963/15/8/010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Li, Ke, Fan-Zhen Kong, Ming Yang, Fatih Ozaydin, Qing Yang y Zhuo-Liang Cao. "Generating multi-photon W-like states for perfect quantum teleportation and superdense coding". Quantum Information Processing 15, n.º 8 (6 de mayo de 2016): 3137–50. http://dx.doi.org/10.1007/s11128-016-1332-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Chen, J. X. y M. S. Ying. "Ancilla-assisted discrimination of quantum gates". Quantum Information and Computation 10, n.º 1&2 (enero de 2010): 160–77. http://dx.doi.org/10.26421/qic10.1-2-12.

Texto completo
Resumen
The intrinsic idea of superdense coding is to find as many gates as possible such that they can be perfectly discriminated. In this paper, we consider a basic scheme of discrimination of quantum gates, called ancilla-assisted discrimination, in which a set of quantum gates on a d-dimensional system are perfectly discriminated with assistance from an r-dimensional ancilla system. The main contribution of the present paper is two-fold: (1) The number of quantum gates that can be discriminated in this scheme is evaluated. We prove that any rd+1 quantum gates cannot be perfectly discriminated with assistance from the ancilla, and there exist rd quantum gates which can be perfectly discriminated with assistance from the ancilla. (2) The dimensionality of the minimal ancilla system is estimated. We prove that there exists a constant positive number c such that for any k\leq cr quantum gates, if they are d-assisted discriminable, then they are also r-assisted discriminable, and there are c^{\prime}rc^{\prime}>c different quantum gates which can be discriminated with a d-dimensional ancilla, but they cannot be discriminated if the ancilla is reduced to an r-dimensional system. Thus, the order O(r) of the number of quantum gates that can be discriminated with assistance from an r-dimensional ancilla is optimal. The results reported in this paper represent a preliminary step toward understanding the role ancilla system plays in discrimination of quantum gates as well as the power and limit of superdense coding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Adhikari, Satyabrata, Indranil Chakrabarty y Pankaj Agrawal. "Probabilistic secret sharing through noise quantum channe". Quantum Information and Computation 12, n.º 3&4 (marzo de 2012): 253–61. http://dx.doi.org/10.26421/qic12.3-4-5.

Texto completo
Resumen
In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Poyraz Kocak, Yasemin y Selcuk Sevgen. "Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer". Electrica 22, n.º 2 (6 de junio de 2022): 120–31. http://dx.doi.org/10.54614/electrica.2022.22021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Hillebrand, Anne. "Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus". Electronic Proceedings in Theoretical Computer Science 95 (1 de octubre de 2012): 103–21. http://dx.doi.org/10.4204/eptcs.95.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Li, Lvzhou y Daowen Qiu. "The states of W-class as shared resources for perfect teleportation and superdense coding". Journal of Physics A: Mathematical and Theoretical 40, n.º 35 (14 de agosto de 2007): 10871–85. http://dx.doi.org/10.1088/1751-8113/40/35/010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bédard, Charles Alexandre. "The ABC of Deutsch–Hayden Descriptors". Quantum Reports 3, n.º 2 (27 de abril de 2021): 272–85. http://dx.doi.org/10.3390/quantum3020017.

Texto completo
Resumen
It has been more than 20 years since Deutsch and Hayden proved the locality of quantum theory, using the Heisenberg picture of quantum computational networks. Of course, locality holds even in the face of entanglement and Bell’s theorem. Today, most researchers in quantum foundations are still convinced not only that a local description of quantum systems has not yet been provided, but that it cannot exist. The main goal of this paper is to address this misconception by re-explaining the descriptor formalism in a hopefully accessible and self-contained way. It is a step-by-step guide to how and why descriptors work. Finally, superdense coding is revisited in the light of descriptors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

WANG, XIN-WEN. "PREPARATION AND MANIPULATION OF W-CLASS ENTANGLED STATES: APPLICATIONS TO QUANTUM-INFORMATION PROCESSING". International Journal of Quantum Information 07, n.º 02 (marzo de 2009): 493–504. http://dx.doi.org/10.1142/s0219749909004633.

Texto completo
Resumen
We propose a cavity-quantum-electrodynamics scheme for one-step generation of the special configuration of W-class state [Formula: see text] which can implement deterministic teleportation, superdense coding, quantum-information splitting, and phase-covariant telecloning. We also present a method for one-step realization of a nontrivial unitary transformation [Formula: see text] which can transform a standard W state into a fully separable state. The [Formula: see text] operation plays a key role in recently proposed quantum-information processing tasks. Both the schemes are robust against decoherence. In addition, they can endure the error of controlling the interaction time between atoms and cavity. Our ideas can also be generalized to other systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía