Índice
Literatura académica sobre el tema "Superconcentrated electrolyte"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Superconcentrated electrolyte".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Superconcentrated electrolyte"
Klorman, Jake A. y Kah Chun Lau. "The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries". Energies 16, n.º 9 (26 de abril de 2023): 3700. http://dx.doi.org/10.3390/en16093700.
Texto completoTian, Zengying, Wenjun Deng, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Mianqi Xue, Rui Li y Feng Pan. "Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors". Functional Materials Letters 10, n.º 06 (diciembre de 2017): 1750081. http://dx.doi.org/10.1142/s1793604717500813.
Texto completoYang, Chongyin, Liumin Suo, Oleg Borodin, Fei Wang, Wei Sun, Tao Gao, Xiulin Fan et al. "Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility". Proceedings of the National Academy of Sciences 114, n.º 24 (31 de mayo de 2017): 6197–202. http://dx.doi.org/10.1073/pnas.1703937114.
Texto completoDubouis, Nicolas, Pierre Lemaire, Boris Mirvaux, Elodie Salager, Michael Deschamps y Alexis Grimaud. "The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes". Energy & Environmental Science 11, n.º 12 (2018): 3491–99. http://dx.doi.org/10.1039/c8ee02456a.
Texto completoPal, Urbi, Fangfang Chen, Derick Gyabang, Thushan Pathirana, Binayak Roy, Robert Kerr, Douglas R. MacFarlane, Michel Armand, Patrick C. Howlett y Maria Forsyth. "Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications". Journal of Materials Chemistry A 8, n.º 36 (2020): 18826–39. http://dx.doi.org/10.1039/d0ta06344d.
Texto completoRakov, Dmitrii. "(Best Student Presentation) Is Solid-Electrolyte Interphase Formation Affected by Electrode Conductivity?" ECS Meeting Abstracts MA2023-01, n.º 5 (28 de agosto de 2023): 873. http://dx.doi.org/10.1149/ma2023-015873mtgabs.
Texto completoWang, Weijian, Wenjun Deng, Xusheng Wang, Yibo Li, Zhuqing Zhou, Zongxiang Hu, Mianqi Xue y Rui Li. "A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors". Chemical Communications 56, n.º 57 (2020): 7965–68. http://dx.doi.org/10.1039/d0cc02040k.
Texto completoYamada, Yuki, Makoto Yaegashi, Takeshi Abe y Atsuo Yamada. "A superconcentrated ether electrolyte for fast-charging Li-ion batteries". Chemical Communications 49, n.º 95 (2013): 11194. http://dx.doi.org/10.1039/c3cc46665e.
Texto completoLundgren, Henrik, Johan Scheers, Mårten Behm y Göran Lindbergh. "Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI:Acetonitrile Electrolyte". Journal of The Electrochemical Society 162, n.º 7 (2015): A1334—A1340. http://dx.doi.org/10.1149/2.0961507jes.
Texto completoSun, Ju, Luke A. O’Dell, Michel Armand, Patrick C. Howlett y Maria Forsyth. "Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes". ACS Energy Letters 6, n.º 7 (14 de junio de 2021): 2481–90. http://dx.doi.org/10.1021/acsenergylett.1c00816.
Texto completoTesis sobre el tema "Superconcentrated electrolyte"
Droguet, Léa. "Vers des électrolytes aqueux superconcentrés pour une application dans les batteries Li-ion". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS330.
Texto completoThe development of superconcentrated aqueous electrolytes, namely Water-in-salt electrolytes (WiSE), from 2015 onwards has renewed the interest for aqueous-based Li-ion battery (LIB). Indeed, they were proposed to overcome issues related to safety and sustainability of common carbonate-based organic solvent while solving the poor performances of diluted aqueous electrolyte due to the narrow electrochemical stability window (ESW) of water (1.23 V). Such achievements are largely attributed to modification of the electrolyte structure upon increase in concentration that changes the physico-chemical properties and the interfacial reactivity. An inorganic LiF-based solid electrolyte interphase (SEI) was reported to be formed, opening the path for the use of low potential negative electrodes, further increasing the energy density of these batteries. This work aims to provide answers regarding the viability of WiSE in LIB. By conducting a systematic study of the impact of superconcentration on battery performances as function of the operating conditions, we demonstrate that the SEI is not able to prevent water reduction following the hydrogen evolution reaction (HER), neither during cycling nor during resting period, i.e. self-discharge. Indeed, the rates for water consumption calculated during cycling and resting period are found within the same order of magnitude, highlighting the SEI limitation to prevent water reduction although the surface is passivated. Determining the activation energies for HER during cycling and self-discharge, we suggest that self-discharge is more likely driven by water reduction than Li+ deintercalation. Eventually, LiF solubility measurements, gas chromatography tests and environmental scanning electron microscopy suggest that SEI instability is related to structural defects that cannot be self-passivated in WiSE. A presoaking step in organic electrolyte of an artificial Li/LiF layer reduces water consumption and thus confirms the need for the SEI to self-repair