Índice
Literatura académica sobre el tema "Sucrose Non-Fermentable complex"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Sucrose Non-Fermentable complex".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Sucrose Non-Fermentable complex"
Choi, Sung Kyung, Myoung Jun Kim y Jueng Soo You. "SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells". International Journal of Molecular Sciences 21, n.º 11 (1 de junio de 2020): 3969. http://dx.doi.org/10.3390/ijms21113969.
Texto completoLiu, Hongyu, Yang Zhao, Guizhen Zhao, Yongjie Deng, Y. Eugene Chen y Jifeng Zhang. "SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies". Cells 13, n.º 2 (16 de enero de 2024): 168. http://dx.doi.org/10.3390/cells13020168.
Texto completoNguyen, Thinh T., Joanne G. A. Savory, Travis Brooke-Bisschop, Randy Ringuette, Tanya Foley, Bradley L. Hess, Kirk J. Mulatz, Laura Trinkle-Mulcahy y David Lohnes. "Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity". Journal of Biological Chemistry 292, n.º 8 (12 de enero de 2017): 3389–99. http://dx.doi.org/10.1074/jbc.m116.752774.
Texto completoSoto-Castillo, Juan José, Lucía Llavata-Marti, Roser Fort-Culillas, Pablo Andreu-Cobo, Rafael Moreno, Carles Codony, Xavier García del Muro, Ramon Alemany, Josep M. Piulats y Juan Martin-Liberal. "SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy". International Journal of Molecular Sciences 24, n.º 13 (6 de julio de 2023): 11143. http://dx.doi.org/10.3390/ijms241311143.
Texto completoCruz-Tapia, Roberto Onner, Ana María Cano-Valdez, Abelardo Meneses-García, Lorena Correa-Arzate, Adriana Molotla-Fragoso, Guillermo Villagómez-Olea, Diana Brisa Sevilla-Lizcano y Javier Portilla-Robertson. "Switch/Sucrose Non-Fermentable (SWI/SNF) Complex—Partial Loss in Sinonasal Squamous Cell Carcinoma: A High-Grade Morphology Impact and Progression". Current Issues in Molecular Biology 46, n.º 11 (30 de octubre de 2024): 12183–95. http://dx.doi.org/10.3390/cimb46110723.
Texto completoPadilla-Benavides, Teresita, Pablo Reyes-Gutierrez y Anthony N. Imbalzano. "Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis". Biology 9, n.º 7 (3 de julio de 2020): 152. http://dx.doi.org/10.3390/biology9070152.
Texto completoWu, Shuai, Nail Fatkhutdinov, Leah Rosin, Jennifer M. Luppino, Osamu Iwasaki, Hideki Tanizawa, Hsin-Yao Tang et al. "ARID1A spatially partitions interphase chromosomes". Science Advances 5, n.º 5 (mayo de 2019): eaaw5294. http://dx.doi.org/10.1126/sciadv.aaw5294.
Texto completoEl Hadidy y Uversky. "Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development". International Journal of Molecular Sciences 20, n.º 21 (23 de octubre de 2019): 5260. http://dx.doi.org/10.3390/ijms20215260.
Texto completoLi, Jing Jing y Cheok Soon Lee. "The Role of the AT-Rich Interaction Domain 1A Gene (ARID1A) in Human Carcinogenesis". Genes 15, n.º 1 (19 de diciembre de 2023): 5. http://dx.doi.org/10.3390/genes15010005.
Texto completoHu, Xiaolong, Mengjie Li, Xue Hao, Yi Lu, Lei Zhang y Geng Wu. "The Osa-Containing SWI/SNF Chromatin-Remodeling Complex Is Required in the Germline Differentiation Niche for Germline Stem Cell Progeny Differentiation". Genes 12, n.º 3 (4 de marzo de 2021): 363. http://dx.doi.org/10.3390/genes12030363.
Texto completoTesis sobre el tema "Sucrose Non-Fermentable complex"
Bretones, Santamarina Jorge. "Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.
Texto completoNowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations