Literatura académica sobre el tema "Subword complexes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Subword complexes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Subword complexes"
Gorsky, Mikhail A. "Subword complexes and edge subdivisions". Proceedings of the Steklov Institute of Mathematics 286, n.º 1 (octubre de 2014): 114–27. http://dx.doi.org/10.1134/s0081543814060078.
Texto completoKnutson, Allen y Ezra Miller. "Subword complexes in Coxeter groups". Advances in Mathematics 184, n.º 1 (mayo de 2004): 161–76. http://dx.doi.org/10.1016/s0001-8708(03)00142-7.
Texto completoCeballos, Cesar, Jean-Philippe Labbé y Christian Stump. "Subword complexes, cluster complexes, and generalized multi-associahedra". Journal of Algebraic Combinatorics 39, n.º 1 (13 de marzo de 2013): 17–51. http://dx.doi.org/10.1007/s10801-013-0437-x.
Texto completoGorsky, M. A. "Subword Complexes and Nil-Hecke Moves". Modeling and Analysis of Information Systems 20, n.º 6 (13 de marzo de 2015): 121–28. http://dx.doi.org/10.18255/1818-1015-2013-6-121-128.
Texto completoKnutson, Allen. "Schubert Patches Degenerate to Subword Complexes". Transformation Groups 13, n.º 3-4 (26 de junio de 2008): 715–26. http://dx.doi.org/10.1007/s00031-008-9013-1.
Texto completoBergeron, Nantel y Cesar Ceballos. "A Hopf algebra of subword complexes". Advances in Mathematics 305 (enero de 2017): 1163–201. http://dx.doi.org/10.1016/j.aim.2016.10.007.
Texto completoGorsky, M. A. "Subword complexes and 2-truncated cubes". Russian Mathematical Surveys 69, n.º 3 (30 de junio de 2014): 572–74. http://dx.doi.org/10.1070/rm2014v069n03abeh004903.
Texto completoCeballos, Cesar, Arnau Padrol y Camilo Sarmiento. "ν-Tamari lattices via subword complexes". Electronic Notes in Discrete Mathematics 61 (agosto de 2017): 215–21. http://dx.doi.org/10.1016/j.endm.2017.06.041.
Texto completoEscobar, Laura y Karola Mészáros. "Subword complexes via triangulations of root polytopes". Algebraic Combinatorics 1, n.º 3 (2018): 395–414. http://dx.doi.org/10.5802/alco.17.
Texto completoArmstrong, Drew y Patricia Hersh. "Sorting orders, subword complexes, Bruhat order and total positivity". Advances in Applied Mathematics 46, n.º 1-4 (enero de 2011): 46–53. http://dx.doi.org/10.1016/j.aam.2010.09.006.
Texto completoTesis sobre el tema "Subword complexes"
Labbé, Jean-Philippe [Verfasser]. "Convex Geometry of Subword Complexes of Coxeter Groups / Jean-Philippe Labbé". Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219070106/34.
Texto completoCartier, Noémie. "Lattice properties of acyclic pipe dreams". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG065.
Texto completoThis thesis comes within the scope of algebraic combinatorics. Some sorting algorithms can be described by diagrams called sorting networks, and the execution of the algorithms on input permutations translates to arrangements of curves on the networks. These arrangements modelize some classical combinatorial structures: for example, the Tamari lattice, whose cover relations are the rotations on binary trees, and which is a well-known quotient of the weak order on permutations. Subword complexes generalize sorting network and arrangements of curves to Coxeter groups. They have deep connections in algebra and geometry, in particular in Schubert calculus, in the study of grassmannian varieties, and in the theory of cluster algebras. This thesis focuses on lattice structures on some subword complexes, generalizing Tamari lattices. More precisely, it studies the relation defined by linear extensions of the facets of a subword complex. At first we focus on subword complexes defined on a triangular word of the symmetric group, which we represent with triangular pipe dreams. We prove that this relation defines a lattice quotient of a weak order interval; moreover, we can also use this relation to define a lattice morphism from this interval to the restriction of the flip graph of the subword complex to some of its facets. Secondly, we extent our study to subword complexes defined on alternating words of the symmetric group. We prove that this same relation also defines a lattice quotient; however, the image of the associated morphism is no longer the flip graph, but the skeleton of the brick polyhedron, an object defines on subword complexes to study realizations of the multiassociahedron. Finally, we discuss possible extensions of these results to finite Coxeter groups, as well as their applications to generalize some objects defined in type A such as nu-Tamari lattices
(6858680), Lida Ahmadi. "Asymptotic Analysis of the kth Subword Complexity". Thesis, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Subword complexes"
Pilaud, Vincent y Christian Stump. "EL-Labelings and Canonical Spanning Trees for Subword Complexes". En Discrete Geometry and Optimization, 213–48. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00200-2_13.
Texto completo