Literatura académica sobre el tema "Subwavelength grating metamaterials"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Subwavelength grating metamaterials".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Subwavelength grating metamaterials"
Luque-González, José Manuel, Alejandro Sánchez-Postigo, Abdelfettah Hadij-ElHouati, Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, Jens H. Schmid, Pavel Cheben, Íñigo Molina-Fernández y Robert Halir. "A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials". Nanophotonics 10, n.º 11 (13 de agosto de 2021): 2765–97. http://dx.doi.org/10.1515/nanoph-2021-0110.
Texto completoSánchez-Postigo, Alejandro, Pablo Ginel-Moreno, Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, Robert Halir, Daniel Pereira-Martín, Abdelfettah Hadij-ElHouati et al. "Building high-performance integrated optical devices using subwavelength grating metamaterials -INVITED". EPJ Web of Conferences 255 (2021): 01001. http://dx.doi.org/10.1051/epjconf/202125501001.
Texto completoPérez-Armenta, Carlos, Alejandro Ortega-Moñux, José Manuel Luque-González, Robert Halir, Pedro Reyes-Iglesias, Jens H. Schmid, Pavel Cheben, íñigo Molina-Fernández y J. Gonzalo Wangüemert Pérez. "Polarization independent 2×2 multimode interference coupler with bricked subwavelength metamaterial". EPJ Web of Conferences 266 (2022): 01009. http://dx.doi.org/10.1051/epjconf/202226601009.
Texto completoVakarin, Vladyslav, Daniele Melati, Thi Thuy Duong Dinh, Xavier Le Roux, Warren Kut King Kan, Cécilia Dupré, Bertrand Szelag et al. "Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography". Nanomaterials 11, n.º 11 (3 de noviembre de 2021): 2949. http://dx.doi.org/10.3390/nano11112949.
Texto completoKameshkov, Oleg, Vasily Gerasimov y Boris Knyazev. "Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range". Sensors 22, n.º 1 (28 de diciembre de 2021): 172. http://dx.doi.org/10.3390/s22010172.
Texto completoFraser, William, Radovan Korček, Ivan Glesk, Jan Litvik, Jens H. Schmid, Pavel Cheben, Winnie N. Ye y Daniel Benedikovic. "High-Efficiency Metamaterial-Engineered Grating Couplers for Silicon Nitride Photonics". Nanomaterials 14, n.º 7 (27 de marzo de 2024): 581. http://dx.doi.org/10.3390/nano14070581.
Texto completoLuque‐González, José Manuel, Robert Halir, Juan Gonzalo Wangüemert‐Pérez, José de‐Oliva‐Rubio, Jens H. Schmid, Pavel Cheben, Íñigo Molina‐Fernández y Alejandro Ortega‐Moñux. "An Ultracompact GRIN‐Lens‐Based Spot Size Converter using Subwavelength Grating Metamaterials". Laser & Photonics Reviews 13, n.º 11 (23 de septiembre de 2019): 1900172. http://dx.doi.org/10.1002/lpor.201900172.
Texto completoBenedikovic, Daniel, Carlos Alonso-Ramos, Sylvain Guerber, Xavier Le Roux, Pavel Cheben, Cécilia Dupré, Bertrand Szelag et al. "Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials". Optics Express 27, n.º 18 (30 de agosto de 2019): 26239. http://dx.doi.org/10.1364/oe.27.026239.
Texto completoChang, Ruei-Jan y Chia-Chien Huang. "Simulation of a High-Performance Polarization Beam Splitter Assisted by Two-Dimensional Metamaterials". Nanomaterials 12, n.º 11 (28 de mayo de 2022): 1852. http://dx.doi.org/10.3390/nano12111852.
Texto completoBadri, S. Hadi y M. M. Gilarlue. "Silicon nitride waveguide devices based on gradient-index lenses implemented by subwavelength silicon grating metamaterials". Applied Optics 59, n.º 17 (10 de junio de 2020): 5269. http://dx.doi.org/10.1364/ao.393501.
Texto completoTesis sobre el tema "Subwavelength grating metamaterials"
Kut, King Kan Warren. "Design and characterization of subwavelength grating (SWG) engineered silicon photonics devices fabricated by immersion lithography". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST099.
Texto completoSilicon photonics technology leverages the mature fabrication processes of the semi-conductor industry for the large volume production of opto-electronic devices. Subwavelength grating (SWG) metamaterials enable advanced engineering of mode confinement and dispersion, that have been used to demonstrate state-of-the-art performance of integrated photonic devices. SWGs generally require minimum feature sizes as small as a 100 nm to suppress reflection and diffraction effects. Hitherto, most reported SWG-based devices have been fabricated using electron-beam lithography. However, this technique is not compatible with large volume fabrication, hampering the commercial adoption of SWG-based photonic devices. Currently, immersion lithography is being deployed in silicon photonic foundries, enabling the patterning of features of 70 nm, when used in conjunction with optical proximity correction (OPC) models. The main goal of this PhD is to study the feasibility of immersion lithography and OPC for the realization of high-performance SWG devices. The SWG devices developed here have been fabricated using the OPC models and 300 mm SOI wafer technology at CEA-Leti. Three devices have been considered as case studies, each with a specific technological challenge: i) a power splitter requiring a single full etch step, ii) a fiber-chip grating coupler interleaving full and shallow etch steps, and iii) an optical antenna array covering a large surface area with a shallow etch step. The power splitter is implemented using a SWG-engineered multi-mode interferometer (MMI) coupler. The SWG is used to control the dispersion of the optical modes to achieve an ultrawide operating spectral bandwidth. This device experimentally showed state-of-the-art bandwidth of 350 nm, in good agreement with simulations. Note that the bandwidth of a conventional MMI without SWG is around 100 nm. The fiber-chip coupler relies on an L-shaped geometry with SWG in full and shallow etch steps to maximize the field radiated towards the fiber. The measured coupling efficiency, of - 1.70 dB (68 %) at a wavelength of 1550 nm, is the highest value reported for an L-shaped coupler fabricated without electron-beam lithography. Still, this value differs from the calculated efficiency of 0.80 dB (83 %), and compares to experimental values achieved with fiber-chip grating couplers without SWG (~ -1.50 dB). One of the main reasons for the limited experimental performance is the strong sensitivity of the structure to errors in the alignment between the full and shallow etch steps. The optical antenna uses shallowly etched SWG teeth to minimize the grating strength, allowing the implementation of a large area emission aperture, of 48 × 48 µm, which is required to minimize the beam divergence. A two-dimensional (2D) optical phased array (OPA) with an antenna pitch of 90 µm × 90 µm, comprising 16 antennas was designed and fabricated. The SWG-based unitary antenna has a measured full width at half maximum divergence of 1.40° at a wavelength of 1550 nm, while the beam emitted from the phased array has a divergence of 0.25°, both in very good agreement with expected values. These results serve as a good proof-of-concept demonstration of this novel antenna architecture. In summary, the results shown in this PhD illustrate the great potential of immersion lithography and OPC for harnessing SWG-engineering, paving the way for their commercial adoption. Devices with full or shallow etch steps exhibited excellent performance close to that predicted by simulations. The fiber-chip grating couplers deviated from expected results, probably due to the tight fabrication tolerances associated with the combination of full and shallow etch steps
Nikkhah, Hamdam. "Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37144.
Texto completoActas de conferencias sobre el tema "Subwavelength grating metamaterials"
Li, Wanxin, Jiewen Li, Rui Li, Ke Li, Yong Yao, Jianan Duan y Xiaochuan Xu. "Ultra-Low Limit-of-Detection Label-Free Biosensing Utilizing Mode Splitting in Subwavelength Grating Metamaterial Microring Resonators". En 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676877.
Texto completoNaraine, Cameron M., Jocelyn N. Westwood-Bachman, Cameron Horvath, Mirwais Aktary, Andrew P. Knights, Jens H. Schmid, Pavel Cheben y Jonathan D. B. Bradley. "Silicon Nitride Ring Resonators Based on Subwavelength Grating Metamaterials". En CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth2h.3.
Texto completoMia, Md Borhan, Nafiz Jaidye, Ishtiaque Ahmed, Syed Z. Ahmed y Sangsik Kim. "Silicon photonic polarization splitter-rotator with subwavelength grating metamaterials". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw3b.162.
Texto completoNikkhah, H. y T. J. Hall. "Subwavelength grating waveguide design rules for integrated photonics". En 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2015. http://dx.doi.org/10.1109/metamaterials.2015.7342487.
Texto completode Cabo, Raquel Fernández, Jaime Vilas, Aitor V. Velasco, Pavel Cheben y David González-Andrade. "Subwavelength silicon metamaterials for high-performance and fabrication-tolerant power splitting". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/iprsn.2023.jtu4a.18.
Texto completoKabir, Md Faiyaz, Md Borhan Mia, Ishtiaque Ahmed, Nafiz Jaidye, Syed Z. Ahmed y Sangsik Kim. "Zero crosstalk in anisotropic TM leaky mode with subwavelength grating metamaterials". En CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sth4r.7.
Texto completoFernández de Cabo, Raquel, Jaime Vilas Ramos, Pavel Cheben, Aitor Villafranca Velasco y David González Andrade. "Experimental characterization of a high-performance Y-junction enhanced with subwavelength grating metamaterials (Conference Presentation)". En Metamaterials, Metadevices, and Metasystems 2022, editado por Nader Engheta, Mikhail A. Noginov y Nikolay I. Zheludev. SPIE, 2022. http://dx.doi.org/10.1117/12.2631762.
Texto completoMia, Md Borhan, Syed Z. Ahmed, Ishtiaque Ahmed, Nafiz Jaidye y Sangsik Kim. "Ultra-broadband silicon photonic polarization beam splitter with anisotropic subwavelength grating metamaterials". En 2021 IEEE Photonics Conference (IPC). IEEE, 2021. http://dx.doi.org/10.1109/ipc48725.2021.9592882.
Texto completoAlonso-Ramos, C., D. Marris-Morini, D. Perez-Galacho, V. Vakarin, L. Vivien, C. Baudot, D. Benedikovic et al. "Sub-Decibel Off-Chip Fiber Couplers Based on Z-Shaped Waveguides and Subwavelength Grating Metamaterials". En 2019 IEEE 16th International Conference on Group IV Photonics (GFP). IEEE, 2019. http://dx.doi.org/10.1109/group4.2019.8853938.
Texto completoBenedikovic, D., E. Cassan, C. Baudot, F. Boeuf, L. Vivien, C. Alonso-Ramos, S. Guerber et al. "Sub-Decibel Off-Chip Fiber Couplers Based on L-Shaped Waveguides and Subwavelength Grating Metamaterials". En 2019 IEEE 16th International Conference on Group IV Photonics (GFP). IEEE, 2019. http://dx.doi.org/10.1109/group4.2019.8926025.
Texto completo