Literatura académica sobre el tema "Subnormalizers"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Subnormalizers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Subnormalizers"

1

Casolo, Carlo. "Subnormalizers in finite groups". Communications in Algebra 18, n.º 11 (enero de 1990): 3791–818. http://dx.doi.org/10.1080/00927879008824110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Casolo, Carlo. "On the subnormalizer of a p-subgroup". Journal of Pure and Applied Algebra 77, n.º 3 (marzo de 1992): 231–38. http://dx.doi.org/10.1016/0022-4049(92)90139-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Esteban Romero, R., F. de Giovanni y A. Russo. "Groups whose subgroups satisfy the weak subnormalizer condition". Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 60, n.º 4 (8 de abril de 2019): 645–56. http://dx.doi.org/10.1007/s13366-019-00448-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cappellini, Valerio, Hans-Jürgen Sommers y Karol Życzkowski. "Subnormalized states and trace-nonincreasing maps". Journal of Mathematical Physics 48, n.º 5 (mayo de 2007): 052110. http://dx.doi.org/10.1063/1.2738359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gheri, Pietro. "Subnormalizers and solvability in finite groups". Journal of Algebra, mayo de 2022. http://dx.doi.org/10.1016/j.jalgebra.2022.04.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Gheri, Pietro. "Subnormalizers and the degree of nilpotence in finite groups". Proceedings of the American Mathematical Society, 28 de febrero de 2020, 1. http://dx.doi.org/10.1090/proc/15080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Murashka, Viachaslau I. y Alexander F. Vasil’ev. "On the 𝜎-nilpotent hypercenter of finite groups". Journal of Group Theory, 7 de mayo de 2022. http://dx.doi.org/10.1515/jgth-2021-0138.

Texto completo
Resumen
Abstract Let 𝜎 be a partition of the set of all primes, and let 𝔉 denote a hereditary formation. We describe all formations 𝔉 for which the 𝔉-hypercenter and the intersection of weak 𝐾-𝔉-subnormalizers of all Sylow subgroups coincide in every finite group. In particular, the formation of all 𝜎-nilpotent groups has this property. With the help of our results, we solve a particular case of Shemetkov’s problem about the intersection of 𝔉-maximal subgroups and the 𝔉-hypercenter. As a corollary, we obtain Hall’s classical result about the hypercenter. We prove that the non-𝜎-nilpotent graph of a group is connected and its diameter is at most 3.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Subnormalizers"

1

Gheri, Pietro. "Subnormalizers and p-elements in finite groups". Doctoral thesis, 2020. http://hdl.handle.net/2158/1193023.

Texto completo
Resumen
The probability that two elements of a finite group commute (i.e. generate an abelian subgroup), also known as the extit{degree of commutativity of G}, dc(G), is a well studied topic in group theory. A first result involving this probability is the theorem by Gustafson which states that the degree of commutativity of a finite nonabelian group is less than 5/8. As a natural generalization, one can consider the probability that two elements of a finite group generate a nilpotent subgroup, the degree of nilpotence. A Gustafson-like theorem for the degree of nilpotence was proved by Guralnick and Wilson in 2000 using the classification of finite simple groups: the degree of nilpotence of a finite nonnilpotent group is less than 1/2. We give a classification-free proof of this theorem. In our proof, an important role is played by the probability sp(G), i.e., the arithmetic mean of the ratios between |S_G(x)| and |G| where S_G(x) is the Wielandt's subnormalizer of x. The main result for our proof is a probabilistic version of Wielandt's criterion for subnormality, which depends on a formula for the order of subnormalizers of p-subgroups proved by Casolo. The analysis of the probability sp(G) leads to the following theorem: if G is a nonsolvable group then sp(G) <1/6. The proof of this theorem involves the classification of finite simple groups and takes up a large portion of the thesis. Inspired by a problem related to this theorem, the final chapter of the thesis is devoted to the investigation of the ratio between the number of p-elements and the order of a Sylow p-subgroup in a finite group. For a p-solvable group G we prove that this ratio is greater than the (p-1)/p th power of the number of Sylow p-subgroups of G. As for the non-p-solvable case, we state a conjecture that, if true, would imply the aforementioned bound for any finite group G and we provide a reduction of the conjecture to finite almost simple groups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía