Literatura académica sobre el tema "Subnormalità"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Subnormalità".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Subnormalità"

1

Ben Taher, R. y M. Rachidi. "The Near Subnormal Weighted Shift and Recursiveness". International Journal of Analysis 2013 (27 de marzo de 2013): 1–4. http://dx.doi.org/10.1155/2013/397262.

Texto completo
Resumen
We aim at studying the near subnormality of the unilateral weighted shifts, whose moment sequences are defined by linear recursive relations of finite order. Using the basic properties of recursive sequences, we provide a natural necessary condition, that ensure the near subnormality of this important class of weighted shifs. Some related new results are established; moreover, applications and consequences are presented; notably the notion of near subnormal completion weighted shift is implanted and explored.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Szymanski, Waclaw. "Dilations and Subnormality". Proceedings of the American Mathematical Society 101, n.º 2 (octubre de 1987): 251. http://dx.doi.org/10.2307/2045991.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Szymański, Wacław. "Dilations and subnormality". Proceedings of the American Mathematical Society 101, n.º 2 (1 de febrero de 1987): 251. http://dx.doi.org/10.1090/s0002-9939-1987-0902537-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Insel, A. "Levels of Subnormality". Linear Algebra and its Applications 262, n.º 1-3 (1 de septiembre de 1997): 27–53. http://dx.doi.org/10.1016/s0024-3795(96)00466-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Insel, Arnold J. "Levels of subnormality". Linear Algebra and its Applications 262 (septiembre de 1997): 27–53. http://dx.doi.org/10.1016/s0024-3795(97)80021-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kemoto, Nobuyuki. "Subnormality in ω12". Topology and its Applications 122, n.º 1-2 (julio de 2002): 287–96. http://dx.doi.org/10.1016/s0166-8641(01)00149-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Demanze, Olivier. "On Subnormality and Formal Subnormality for Tuples of Unbounded Operators". Integral Equations and Operator Theory 46, n.º 3 (julio de 2003): 267–84. http://dx.doi.org/10.1007/s00020-002-1141-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

CRAWFORD, NICK. "SELF CONCEPT AND SUBNORMALITY". Journal of the Institute of Mental Subnormality (APEX) 4, n.º 1 (26 de agosto de 2009): 29–30. http://dx.doi.org/10.1111/j.1468-3156.1976.tb00219.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tizard, J. "PROGNOSIS AND MENTAL SUBNORMALITY". Developmental Medicine & Child Neurology 4, n.º 6 (12 de noviembre de 2008): 648–51. http://dx.doi.org/10.1111/j.1469-8749.1962.tb04162.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Woolf, P. Grahame. "Subnormality Services in Sweden". Developmental Medicine & Child Neurology 12, n.º 4 (12 de noviembre de 2008): 525–30. http://dx.doi.org/10.1111/j.1469-8749.1970.tb01955.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Subnormalità"

1

Allen, Peter S. "Subnormality, ascendancy and projectivities". Thesis, University of Warwick, 1987. http://wrap.warwick.ac.uk/99117/.

Texto completo
Resumen
In 1939, Wielandt introduced the concept of subnormality and proved that in a finite group, the join of the two (and hence any number of) subnormal subgroups is again subnormal. This result does not hold for arbitrary groups. After much work by various authors, Williams gave necessary and sufficient conditions for the join of two subgroups to be subnormal in any group in which they are each subnormally embedded; a sufficient condition is that the two subgroups permute (i.e. their join is their product). This present work arises from considering what in some sense is the dual situation to the above, namely: given a group G with subgroups H and K , both of which contain X as a subnormal subgroup, we ask under what conditions is X subnormal in the join < H,K > of H and K? It makes sense here to assume that G = < H,K > , so we do. We will say that G is a J-group if whenever G = < H,K > and X are as posed, it is true that X is subnormal in G . Unfortunately, apart from obvious classes such as nilpotent groups, J-groups do not seem to exist in abundance: Example 1.1 (due to Wielandt) shows that not even all finite groups are J-groups. Even worse, this example has the finite group G being soluble (of derived length 3) with X central in H (in fact H 1s cyclic). All this does not seem to bode well for trying to find many infinite J-groups (although whether metabelian groups are J-groups is an open problem). However, Wielandt shows that, if we require that the J-group criteria for a group G is satisfied only when H and K permute — in which case we say that G is a ω-group — then every finite group is indeed a ω-group (Theorem 1.3 here). The soluble case of this result is due to Maier. Our aim in this work is to develop Theorem 1.3 in (principally) three directions, a chapter being devoted to each.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gold, Catharine Ann. "Subnormality and soluble factorised groups". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/100929/.

Texto completo
Resumen
Throughout this summary the group G = AXB is always a product of three abelian subgroups A, X and B. In Chapter 1 we study finite 2-groups G, where A and B are elementary and X has order 2. We also assume that X normalises both A and B, and thus AX and XB are nilpotent of class at most 2. We show that when the order of G divides 213 then G has derived length at most 3 ((1.4.2) and (1.6.1)). This supports the conjecture [see Introduction] on the derived length of a group which is expressible as the product of two nilpotent subgroups. In Chapter 2 we consider some special cases of G where A, X and B are finite p-groups and X is cyclic. We obtain a bound for the derived length of G which is independent of the prime p and the order of X. In Chapter 3 we find a bound for the derived length of a finite group G in terms of the highest power of a prime dividing the order of X when Ax = A, Bx = B and X is subnormal in both AX and XB. The most general result is Theorem (3.5.1). If G is a finite p-group and X has order p we show that G has derived length at most 4 (Theorem (3.3.1)). Further in Chapter 3 if Ax « A, Bx = B, X < m AX and X < m XB then a bound for the subnormal defect of X in G is given. When X has order p this bound depends only upon m (see (3.3.4)), and when X has order pn and m is fixed then the subnormal defect of X in G can be bounded in terms of n (see the remark following Proposition (3.4.2)). Chapter 4 shows how some results from Chapters 2 and 3 can be generalised to infinite groups. Theorem (4.3.1) shows that when A and B are p- groups of finite exponent, X has order pn, Ax = A, Bx = B, X < 2 AX and X < 2 XB then G is a locally finite group. Proposition (4.2.2) and Corollary (4.2.3) then enable some of the results about finite groups to be applied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mallon, J. R. "The epidemiology of severe subnormality in Northern Ireland". Thesis, University of Ulster, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Narciso, Maria. "Reticoli di sottogruppi". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22172/.

Texto completo
Resumen
Il risultato di questa tesi caratterizza i gruppi il cui reticolo dei sottogruppi è distributivo. Tali gruppi sono precisamente i gruppi localmente ciclici. Oltre a descrivere alcuni risultati preliminari sui reticoli e sui sottogruppi di composizione di un gruppo, si descrivono anche alcuni reticoli modulari di sottogruppi.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lisi, Francesca. "Una condizione di subnormalità generalizzata per gruppi finiti". Doctoral thesis, 2021. http://hdl.handle.net/2158/1239038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hota, Tapan Kumar. "Subnormality and Moment Sequences". Thesis, 2012. http://hdl.handle.net/2005/3242.

Texto completo
Resumen
In this report we survey some recent developments of relationship between Hausdorff moment sequences and subnormality of an unilateral weighted shift operator. Although discrete convolution of two Haudorff moment sequences may not be a Hausdorff moment sequence, but Hausdorff convolution of two moment sequences is always a moment sequence. Observing from the Berg and Dur´an result that the multiplication operator on Is subnormal, we discuss further work on the subnormality of the multiplication operator on a reproducing kernel Hilbert space, whose kernel is a point-wise product of two diagonal positive kernels. The relationship between infinitely divisible matrices and moment sequence is discussed and some open problems are listed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lee, Feng-Chang y 李豐昌. "On Subnormality For Non-normal matrices". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/30711983082664548772.

Texto completo
Resumen
碩士
國立成功大學
數學系應用數學碩博士班
93
In this thesis, we study the extension properties of a bounded linear transformation from a subspace of a Hilbert space into the whole space (e.g., which has a normal extension N). Given an nxn non-normal matrix A and a kxn matrix B, we obtain some characters of subnormality for the submatrix M(A,B) by means of the geometric behavior of W(N) and W(A).
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kumar, Sumit. "Normal Spectrum of a Subnormal Operator". Thesis, 2013. http://hdl.handle.net/2005/3289.

Texto completo
Resumen
Let H be a separable Hilbert space over the complex field. The class S := {N|M : N is normal on H and M is an invariant subspace for Ng of subnormal operators. This notion was introduced by Halmos. The minimal normal extension Ň of a subnormal operator S was introduced by σ (S) and then Bram proved that Halmos. Halmos proved that σ(Ň) (S) is obtained by filling certain number of holes in the spectrum (Ň) of the minimal normal extension Ň of a subnormal operator S. Let σ (S) := σ (Ň) be the spectrum of the minimal normal extension Ň of S; which is called the normal spectrum of a subnormal operator S: This notion is due to Abrahamse and Douglas. We give several well-known characterization of subnormality. Let C* (S1) and C* (S2) be the C*- algebras generated by S1 and S2 respectively, where S1 and S2 are bounded operators on H: Next we give a characterization for subnormality which is purely C - algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to answer the fol-lowing two questions. Let II be a *- representation from C* (S1) onto C* (S2) such that II(S1) = S2. If S1 is subnormal, then does it follow that S2 is subnormal? What is the relation between σ (S1) and σ (S2)? The first question was asked by Bram and second was asked by Abrahamse and Douglas. Answers to these questions were given by Bunce and Deddens.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Subnormalità"

1

Allen, Peter S. Subnormality, ascendency and projectivities. [s.l.]: typescript, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gold, C. A. Subnormality and soluble factorised groups. [s.l.]: typescript, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Stochel, J. B. Weighted quasishifts, generalized commutation relation, and subnormality. Saarbrücken: Universität des Saarlandes, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mallon, John Rea. The epidemiology of severe subnormality in Northern Ireland. [s.l: The author], 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Associazione nazionale famiglie fanciulli subnormali, ed. Il coraggio di una vita normale. Milano: Sperling & Kupfer, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tomlinson, Sally. Educational Subnormality. Routledge, 2018. http://dx.doi.org/10.4324/9780429489983.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tomlinson, Sally. Educational Subnormality. Taylor & Francis Group, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tomlinson, Sally. Educational Subnormality. Taylor & Francis Group, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Stochel, Jan y Franciszek Hugon Szafraniec. Unbounded Operators and Subnormality. Taylor & Francis Group, 2023.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Garrison, David James. Subnormality conditions in Metabelian Groups. 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Subnormalità"

1

Isaacs, I. "Subnormality". En Graduate Studies in Mathematics, 45–64. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/092/02.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Budzyński, Piotr, Zenon Jabłoński, Il Bong Jung y Jan Stochel. "Subnormality: General Criteria". En Lecture Notes in Mathematics, 33–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74039-3_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Isaacs, I. "More on subnormality". En Graduate Studies in Mathematics, 271–94. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/092/09.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Roman, Steven. "Homomorphisms, Chain Conditions and Subnormality". En Fundamentals of Group Theory, 105–48. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8301-6_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Szafraniec, Franciszek Hugon. "Multipliers in the Reproducing Kernel Hilbert Space, Subnormality and Noncommutative Complex Analysis". En Reproducing Kernel Spaces and Applications, 313–31. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8077-0_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lennox, John C. y Derek J. S. Robinson. "SUBNORMALITY AND SOLUBILITY". En The Theory of Infinite Soluble Groups, 275–89. Oxford University Press, 2004. http://dx.doi.org/10.1093/acprof:oso/9780198507284.003.0012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

"Social Aspects of Subnormality". En Put Away, 7–27. Routledge, 2017. http://dx.doi.org/10.4324/9781315127866-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

"Mental subnormality (mental handicap)". En Signs of Stress, 117–28. Routledge, 2005. http://dx.doi.org/10.4324/9780203988145-15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Walker, Nigel. "Mental Subnormality and Illness". En Crime and Punishment in Britain, 53–67. Routledge, 2017. http://dx.doi.org/10.4324/9780203794418-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Maier, Rudolf R. "Permutability and subnormality of subgroups". En Groups St Andrews 1989, 363–69. Cambridge University Press, 1991. http://dx.doi.org/10.1017/cbo9780511661846.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Subnormalità"

1

Szafraniec, Franciszek Hugon. "Subnormality and cyclicity". En Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Szafraniec, Franciszek Hugon. "Subnormality versus restrictions". En Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Szafraniec, Franciszek Hugon. "Subnormality from bounded vectors". En Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía