Artículos de revistas sobre el tema "Structures de Van der Waals"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Structures de Van der Waals".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu y Lin He. "Twistronics in graphene-based van der Waals structures". Chinese Physics B 29, n.º 11 (octubre de 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.
Texto completoFife, Paul C. y Xiao-Ping Wang. "Periodic structures in a van der Waals fluid". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, n.º 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.
Texto completoWang, Yanli y Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study". Physical Chemistry Chemical Physics 17, n.º 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.
Texto completoZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang y Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes". Materials 15, n.º 22 (18 de noviembre de 2022): 8220. http://dx.doi.org/10.3390/ma15228220.
Texto completoFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO y NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS". Journal of Bioinformatics and Computational Biology 06, n.º 04 (agosto de 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Texto completoAnnamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, Surajit Saha, Hye Jeong Park, Eun Bi Cho, Brijesh Kumar, Abhijeet Patra, Sang-Woo Kim y T. Venkatesan. "Surface energy and wettability of van der Waals structures". Nanoscale 8, n.º 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.
Texto completoForest, Susan E. y Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes". Journal of the American Chemical Society 118, n.º 1 (enero de 1996): 217–24. http://dx.doi.org/10.1021/ja952849z.
Texto completoDeilmann, Thorsten, Michael Rohlfing y Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures". Journal of Physics: Condensed Matter 32, n.º 33 (19 de mayo de 2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.
Texto completoQuan, Silong, Linghui He y Yong Ni. "Tunable mosaic structures in van der Waals layered materials". Physical Chemistry Chemical Physics 20, n.º 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.
Texto completoKing, Benjamin T., Bruce C. Noll y Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-". Collection of Czechoslovak Chemical Communications 64, n.º 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.
Texto completoPetrusová, Helena, Zdeněk Havlas, Pavel Hobza y Rudolf Zahradník. "A theoretical study on acetylene dimer, acetylene-s-tetrazine and acetylene-benzene associates". Collection of Czechoslovak Chemical Communications 53, n.º 11 (1988): 2495–502. http://dx.doi.org/10.1135/cccc19882495.
Texto completoZhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang y Bo Sun. "Incoherent phonon transport dominates heat conduction across van der Waals superlattices". Applied Physics Letters 121, n.º 2 (11 de julio de 2022): 022201. http://dx.doi.org/10.1063/5.0096861.
Texto completoBöttcher, O., V. Meyer y D. H. Sutter. "On the Validity of Additivity Rules for the Molecular Magnetizability Tensor and the Molecular g-Tensor in van der Waals Complexes. A Rotational Zeeman Effect Study o f 1,1-Dideutero-Cyclopropane". Zeitschrift für Naturforschung A 49, n.º 4-5 (1 de mayo de 1994): 585–88. http://dx.doi.org/10.1515/zna-1994-4-510.
Texto completoSaito, Yuta, Paul Fons, Kirill V. Mitrofanov, Kotaro Makino, Junji Tominaga, John Robertson y Alexander V. Kolobov. "Chalcogenide van der Waals superlattices: a case example of interfacial phase-change memory". Pure and Applied Chemistry 91, n.º 11 (26 de noviembre de 2019): 1777–86. http://dx.doi.org/10.1515/pac-2019-0105.
Texto completoToksumakov, A. N., V. S. Baidyshev, D. G. Kvashnin y Z. I. Popov. "Bonding Duality and Optoelectronic Properties of Bilayer Carbon Structures Based on the T12 Phase and Penta-Graphene". JETP Letters 117, n.º 6 (marzo de 2023): 441–48. http://dx.doi.org/10.1134/s0021364023600283.
Texto completoZhou, Congcong, Xiaodan Li y Taotao Hu. "Structural and Electronic Properties of Heterostructures Composed of Antimonene and Monolayer MoS2". Nanomaterials 10, n.º 12 (27 de noviembre de 2020): 2358. http://dx.doi.org/10.3390/nano10122358.
Texto completoBrowning, Robert, Paul Plachinda, Prasanna Padigi, Raj Solanki y Sergei Rouvimov. "Growth of multiple WS2/SnS layered semiconductor heterojunctions". Nanoscale 8, n.º 4 (2016): 2143–48. http://dx.doi.org/10.1039/c5nr08006a.
Texto completoMichałowski, Paweł Piotr, Piotr Caban y Jacek Baranowski. "Secondary ion mass spectrometry investigation of carbon grain formation in boron nitride epitaxial layers with atomic depth resolution". Journal of Analytical Atomic Spectrometry 34, n.º 5 (2019): 848–53. http://dx.doi.org/10.1039/c9ja00004f.
Texto completoAzadi, Sam y Graeme J. Ackland. "The role of van der Waals and exchange interactions in high-pressure solid hydrogen". Physical Chemistry Chemical Physics 19, n.º 32 (2017): 21829–39. http://dx.doi.org/10.1039/c7cp03729e.
Texto completoSaeki, Hidenori, Daisuke Sakamaki, Hideki Fujiwara y Shu Seki. "Extreme multi-point van der Waals interactions: isolable dimers of phthalocyanines substituted with pillar-like azaacenes". Chemical Science 10, n.º 39 (2019): 8939–45. http://dx.doi.org/10.1039/c9sc01739a.
Texto completoLatychevskaia, Tatiana, Colin Robert Woods, Yi Bo Wang, Matthew Holwill, Eric Prestat, Sarah J. Haigh y Kostya S. Novoselov. "Convergent beam electron diffraction of multilayer Van der Waals structures". Ultramicroscopy 212 (mayo de 2020): 112976. http://dx.doi.org/10.1016/j.ultramic.2020.112976.
Texto completoTang, Kewei y Weihong Qi. "Moiré‐Pattern‐Tuned Electronic Structures of van der Waals Heterostructures". Advanced Functional Materials 30, n.º 32 (3 de junio de 2020): 2002672. http://dx.doi.org/10.1002/adfm.202002672.
Texto completoSaito, Yuta, Paul Fons, Alexander V. Kolobov y Junji Tominaga. "Self‐organized van der Waals epitaxy of layered chalcogenide structures". physica status solidi (b) 252, n.º 10 (11 de agosto de 2015): 2151–58. http://dx.doi.org/10.1002/pssb.201552335.
Texto completoBawari, Sumit, Nisheal M. Kaley, Shubhadeep Pal, Thazhe Veettil Vineesh, Shamasree Ghosh, Jagannath Mondal y Tharangattu N. Narayanan. "On the hydrogen evolution reaction activity of graphene–hBN van der Waals heterostructures". Physical Chemistry Chemical Physics 20, n.º 22 (2018): 15007–14. http://dx.doi.org/10.1039/c8cp01020j.
Texto completoBuckingham, A. D. y P. W. Fowler. "A model for the geometries of Van der Waals complexes". Canadian Journal of Chemistry 63, n.º 7 (1 de julio de 1985): 2018–25. http://dx.doi.org/10.1139/v85-334.
Texto completoFonrouge, Ana, Florencia Cecchi, Pablo Alborés, Ricardo Baggio y Fabio D. Cukiernik. "Relative influence of noncovalent interactions on the melting points of a homologous series of 1,2-dibromo-4,5-dialkoxybenzenes". Acta Crystallographica Section C Crystal Structure Communications 69, n.º 2 (29 de enero de 2013): 204–8. http://dx.doi.org/10.1107/s0108270113002485.
Texto completoSlassi, Amine, David Cornil y Jérôme Cornil. "Theoretical characterization of the electronic properties of heterogeneous vertical stacks of 2D metal dichalcogenides containing one doped layer". Physical Chemistry Chemical Physics 22, n.º 25 (2020): 14088–98. http://dx.doi.org/10.1039/d0cp01878c.
Texto completoMenshchikova, T. V., I. P. Rusinov, P. Golub, I. Yu Sklyadneva, R. Heid, A. Isaeva, V. M. Kuznetsov y E. V. Chulkov. "Two- and one-dimensional quantum spin Hall states in stanene-functionalized GaTe and InTe matrices". Journal of Materials Chemistry C 7, n.º 26 (2019): 7929–37. http://dx.doi.org/10.1039/c9tc01823a.
Texto completoWang, Bao-Ji, Xiao-Hua Li, Ruiqi Zhao, Xiao-Lin Cai, Wei-Yang Yu, Wei-Bin Li, Zhen-Shen Liu, Li-Wei Zhang y San-Huang Ke. "Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures". Journal of Materials Chemistry A 6, n.º 19 (2018): 8923–29. http://dx.doi.org/10.1039/c8ta01019f.
Texto completoCui, Teng, Kevin Yip, Aly Hassan, Guorui Wang, Xingjian Liu, Yu Sun y Tobin Filleter. "Graphene fatigue through van der Waals interactions". Science Advances 6, n.º 42 (octubre de 2020): eabb1335. http://dx.doi.org/10.1126/sciadv.abb1335.
Texto completoAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen y Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers". RSC Advances 11, n.º 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Texto completoPham, Thi Hue, Hamid Ullah, Aamir Shafique, Hye Jung Kim y Young-Han Shin. "Enhanced out-of-plane electromechanical response of Janus ZrSeO". Physical Chemistry Chemical Physics 23, n.º 30 (2021): 16289–95. http://dx.doi.org/10.1039/d1cp00119a.
Texto completoHušák, Michal, Bohumil Kratochvíl, Ivana Císařová y Alexandr Jegorov. "Crystal Structures of Two New Cyclosporin Clathrates". Collection of Czechoslovak Chemical Communications 65, n.º 12 (2000): 1950–58. http://dx.doi.org/10.1135/cccc20001950.
Texto completoDeng, Zhongxun y Xianhui Wang. "Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure". RSC Advances 9, n.º 45 (2019): 26024–29. http://dx.doi.org/10.1039/c9ra03175h.
Texto completoKrupa, Justyna, Maria Wierzejewska y Jan Lundell. "Structure and IR Spectroscopic Properties of HNCO Complexes with SO2 Isolated in Solid Argon". Molecules 26, n.º 21 (25 de octubre de 2021): 6441. http://dx.doi.org/10.3390/molecules26216441.
Texto completoChen, Yicong, Jun Chen y Zhibing Li. "Cold Cathodes with Two-Dimensional van der Waals Materials". Nanomaterials 13, n.º 17 (28 de agosto de 2023): 2437. http://dx.doi.org/10.3390/nano13172437.
Texto completoSulaiman, Media. "Vibrational frequencies of entrance and exit channels of CH4 with the radical Cl atom in the van der Waals region". Journal of Zankoy Sulaimani - Part A 25, n.º 1 (20 de junio de 2023): 8. http://dx.doi.org/10.17656/jzs.10905.
Texto completoKaźmierczak, Michał y Andrzej Katrusiak. "The shortest chalcogen...halogen contacts in molecular crystals". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, n.º 5 (19 de septiembre de 2019): 865–69. http://dx.doi.org/10.1107/s2052520619011004.
Texto completoPham, Khang D., Lam V. Tan, M. Idrees, Bin Amin, Nguyen N. Hieu, Huynh V. Phuc, Le T. Hoa y Nguyen V. Chuong. "Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures". New Journal of Chemistry 44, n.º 35 (2020): 14964–69. http://dx.doi.org/10.1039/d0nj03236k.
Texto completoYagmurcukardes, M., Y. Sozen, M. Baskurt, F. M. Peeters y H. Sahin. "Interface-dependent phononic and optical properties of GeO/MoSO heterostructures". Nanoscale 14, n.º 3 (2022): 865–74. http://dx.doi.org/10.1039/d1nr06534c.
Texto completoRosul, Md Golam, Doeon Lee, David H. Olson, Naiming Liu, Xiaoming Wang, Patrick E. Hopkins, Kyusang Lee y Mona Zebarjadi. "Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures". Science Advances 5, n.º 11 (noviembre de 2019): eaax7827. http://dx.doi.org/10.1126/sciadv.aax7827.
Texto completoBjörkman, Torbjörn. "Testing several recent van der Waals density functionals for layered structures". Journal of Chemical Physics 141, n.º 7 (21 de agosto de 2014): 074708. http://dx.doi.org/10.1063/1.4893329.
Texto completoHu, Wei y Jinlong Yang. "Two-dimensional van der Waals heterojunctions for functional materials and devices". Journal of Materials Chemistry C 5, n.º 47 (2017): 12289–97. http://dx.doi.org/10.1039/c7tc04697a.
Texto completoLi, Longhua y Weidong Shi. "Tuning electronic structures of Sc2CO2/MoS2 polar–nonpolar van der Waals heterojunctions: interplay of internal and external electric fields". Journal of Materials Chemistry C 5, n.º 32 (2017): 8128–34. http://dx.doi.org/10.1039/c7tc02384g.
Texto completoDuvinage, Daniel, Artem Schröder, Enno Lork y Jens Beckmann. "New crystal structures of alkali metal tetrakis(pentafluorophenyl)borates". Main Group Metal Chemistry 43, n.º 1 (21 de junio de 2020): 99–101. http://dx.doi.org/10.1515/mgmc-2020-0011.
Texto completoEric, W. Martin, Jason Horng, G. Ruth Hanna, Eunice Paik, Michael-Henr Wentzel, Hui Deng y T. Cundiff Steven. "Encapsulation narrows excitonic homogeneous linewidth of exfoliated MoSe2 monolayer". EPJ Web of Conferences 205 (2019): 06021. http://dx.doi.org/10.1051/epjconf/201920506021.
Texto completoSun, Xiao Yan, Dan Qiao, Long Qiang y Shu Guang Xiang. "Effects of Different Zeolite Cluster Model on the Simulation of Benzene Adsorption by ONIOM3 Method". Advanced Materials Research 884-885 (enero de 2014): 204–7. http://dx.doi.org/10.4028/www.scientific.net/amr.884-885.204.
Texto completoDas, Saunak, Johannes Fiedler, Oliver Stauffert, Michael Walter, Stefan Yoshi Buhmann y Martin Presselt. "Macroscopic quantum electrodynamics and density functional theory approaches to dispersion interactions between fullerenes". Physical Chemistry Chemical Physics 22, n.º 40 (2020): 23295–306. http://dx.doi.org/10.1039/d0cp02863k.
Texto completoLv, Weiqiang, Yaxing Zhu, Yinghua Niu, Weirong Huo, Kang Li, Gaolong Zhu, Yachun Liang, Wenzhan Wu y Weidong He. "Assembly of anisotropic one dimensional Ag nanostructures through orientated attachment: on-axis or off-axis growth?" RSC Advances 5, n.º 27 (2015): 20783–87. http://dx.doi.org/10.1039/c5ra02018b.
Texto completoLiu, Xiaozhi, Ang Gao, Qinghua Zhang, Yaxian Wang, Yangyang Zhang, Yangfan Li, Xing Zhang, Lin Gu, Jinsong Hu y Dong Su. "One-dimensional ionic-bonded structures in NiSe nanowire". Applied Physics Letters 125, n.º 26 (23 de diciembre de 2024). https://doi.org/10.1063/5.0240608.
Texto completo