Literatura académica sobre el tema "Structured lattices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Structured lattices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Structured lattices"
Frascella, A. y C. Guido. "Structured lattices and ground categories ofL-sets". International Journal of Mathematics and Mathematical Sciences 2005, n.º 17 (2005): 2783–803. http://dx.doi.org/10.1155/ijmms.2005.2783.
Texto completoBathla, Pranjal y John Kennedy. "3D Printed Structured Porous Treatments for Flow Control around a Circular Cylinder". Fluids 5, n.º 3 (14 de agosto de 2020): 136. http://dx.doi.org/10.3390/fluids5030136.
Texto completoHORE, VICTORIA R. A., JOHN B. TROY y STEPHEN J. EGLEN. "Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex". Visual Neuroscience 29, n.º 6 (30 de octubre de 2012): 283–99. http://dx.doi.org/10.1017/s0952523812000338.
Texto completoBudinski, Ljubomir, Julius Fabian y Matija Stipić. "Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices". Computers & Mathematics with Applications 70, n.º 10 (noviembre de 2015): 2601–15. http://dx.doi.org/10.1016/j.camwa.2015.09.027.
Texto completoKumar, K. Raj y Giuseppe Caire. "Space–Time Codes From Structured Lattices". IEEE Transactions on Information Theory 55, n.º 2 (febrero de 2009): 547–56. http://dx.doi.org/10.1109/tit.2008.2009595.
Texto completoDziobiak, Wieslaw, Jaroslav Ježek y Ralph McKenzie. "Avoidable structures, II: Finite distributive lattices and nicely structured ordered sets". Algebra universalis 60, n.º 3 (16 de marzo de 2009): 259–91. http://dx.doi.org/10.1007/s00012-009-2098-0.
Texto completoBoley, J. William, Wim M. van Rees, Charles Lissandrello, Mark N. Horenstein, Ryan L. Truby, Arda Kotikian, Jennifer A. Lewis y L. Mahadevan. "Shape-shifting structured lattices via multimaterial 4D printing". Proceedings of the National Academy of Sciences 116, n.º 42 (2 de octubre de 2019): 20856–62. http://dx.doi.org/10.1073/pnas.1908806116.
Texto completoAnoop, V. S. y S. Asharaf. "Extracting Conceptual Relationships and Inducing Concept Lattices from Unstructured Text". Journal of Intelligent Systems 28, n.º 4 (25 de septiembre de 2019): 669–81. http://dx.doi.org/10.1515/jisys-2017-0225.
Texto completoKhoromskaia, Venera y Boris N. Khoromskij. "Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach". Computational Methods in Applied Mathematics 17, n.º 3 (1 de julio de 2017): 431–55. http://dx.doi.org/10.1515/cmam-2017-0004.
Texto completoSTRACCIA, UMBERTO. "DESCRIPTION LOGICS OVER LATTICES". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14, n.º 01 (febrero de 2006): 1–16. http://dx.doi.org/10.1142/s0218488506003807.
Texto completoTesis sobre el tema "Structured lattices"
Felderhoff, Joël. "Difficultés de Problèmes de Réseaux Structurés pour la Cryptographie Post-Quantique". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0059.
Texto completoThe security of cryptographic protocols is based on the presumed difficulty of algorithmic problems. Among those identified so far, some of the best problems to serve as a foundation for quantum-proof cryptography come from lattices. Lattices are a mathematical structure defined as a set of space vectors generated by integer combinations of a finite number of linearly independent real vectors (its basis). A typical example of a related security problem is the Shortest Vector Problem (SVP). Given a base of an n-dimensional lattice, find a non-zero short vector. For efficiency reasons, these problems are restricted to lattices arising from number theory, known as structured lattices. As the security assumptions for these particular lattices are different from those for unstructured lattices, it is necessary to study them specifically, which is the aim of this thesis.We have studied the case of NTRU and uSVP modules in rank 2, proving that the SVP problem is equivalent on these two families of lattices. We also show a worst-case to average-case reduction for rank-2 uSVP lattices. Then we show that solving SVP on a prime ideal of small norm is no easier than solving SVP on any ideal
ASHOK, RAMYA. "A DATABASE SYSTEM TO STORE AND RETRIEVE A CONCEPT LATTICE STRUCTURE". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130552767.
Texto completoJenkins, Sarah Nield Morrish. "Mechanical properties and structural evaluation of diamond structure Ti6Al4V lattices made by Electron Beam Melting". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20954/.
Texto completoBanihashemi, Amir H. "Decoding complexity and trellis structure of lattices". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22189.pdf.
Texto completoBurns, D. "Factorisability, group lattices, and Galois module structure". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335599.
Texto completoO'Connor, Joseph. "Fluid-structure interactions of wall-mounted flexible slender structures". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/fluidstructure-interactions-of-wallmounted-flexible-slender-structures(1dab2986-b78f-4ff9-9b2e-5d2181cfa009).html.
Texto completoGoel, Archak. "Design of Functionally Graded BCC Type Lattice Structures Using B-spline Surfaces for Additive Manufacturing". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1552398559313737.
Texto completoHou, An. "Strength of composite lattice structures". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12475.
Texto completoObiedat, Mohammad. "Incrementally Sorted Lattice Data Structures". Thesis, The George Washington University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3732474.
Texto completoData structures are vital entities that strongly impact the efficiency of several software applications. Compactness, predictable memory access patterns, and good temporal and spacial locality of the structure's operations are increasingly becoming essential factors in the selection of a data structure for a specific application. In general, the less data we store and move the better for efficiency and power consumption, especially in infrastructure software and applications for hand-held devices like smartphones. In this dissertation, we extensively study a data structure named lattice data structure (LDS) that is as compact and suitable for memory hierarchies as the array, yet with a rich structure that enables devising procedures with better time bounds.
To achieve performance similar to the performance of the optimal O(log(N)) time complexity of the searching operations of other structures, we provide a hybrid searching algorithm that can be implemented by searching the lattice using the basic searching algorithm when the degree of the sortedness of the lattice is less than or equal to 0.9h, and the jump searching algorithm when the degree of the sortedness of the lattice is greater than 0.9h. A sorting procedure that can be used, during the system idle time, to incrementally increase the degree of sortedness of the lattice is given. We also provide randomized and parallel searching algorithms that can be used instead of the usual jump-and-walk searching algorithms.
A lattice can be represented by a one-dimensional array, where each cell is represented by one array element. The worst case time complexity of the basic LDS operations and the average time complexity of some of the order-statistic operations are better than the corresponding time complexities of most of other data structures operations. This makes the LDS a good choice for memory-constrained systems, for systems where power consumption is a critical issue, and for real-time systems. A potential application of the LDS is to use it as an index structure for in-memory databases.
Kouach, Mona. "Methods for modelling lattice structures". Thesis, KTH, Hållfasthetslära (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260498.
Texto completoÖkad implementering av gitterstrukturer i komponenter är ett resultat av utvecklingen inom additiv tillverkning. Metoden öppnar upp för tillverkning av komplexa strukturer med färre delmoment. Dock så uppkommer det svårigheter vid simulering av dessa komplexa strukturer då beräkningar snabbt tyngs ner med ökad komplexitet. Följande examensarbete har utförts hos avdelningen Strukturanalys, på SAAB i Järfälla, för att de ska kunna möta upp det framtida behovet av beräkningar på additivt tillverkade gitterstrukturer. I det här arbetet presenteras ett tillvägagångsätt för modellering av gitterstrukturer med hjälp av represantiva volymselement. Styvhetsmatriser har räknats fram, för en vald gitterkonfiguration, som sedan viktats mot tre snarlika representativa volymselement. En jämförelseanalys mellan de olika styvhetsmatriserna har sedan gjorts på en större och solid modell för att se hur väl metoderna förutsett deformationen av en gitterstruktur i samma storlek. Resultaten har visat att samtliga metoder är bra approximationer med tämligen små skillnader från randeffekterna. Vid jämförelseanalysen simulerades gitterstrukturen bäst med två av de tre metoder. En av slutsatserna är att det är viktigt att förstå inverkan av randvillkoren hos gitterstrukturer innan implementering görs med det tillvägagångssätt som presenterats i det här examensarbetet.
Libros sobre el tema "Structured lattices"
H, Sowa, ed. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Buscar texto completoMüller-Hoissen, Folkert, Jean Marcel Pallo y Jim Stasheff, eds. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Texto completoFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Buscar texto completoLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Buscar texto completoAmerican Society of Civil Engineers., ed. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Buscar texto completoAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Buscar texto completoZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Department of Civil Engineering, University of Queensland, 1992.
Buscar texto completoZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Universityof Queensland, Dept. of Civil Engineering, 1990.
Buscar texto completoAkademii͡a nauk SSSR. I͡Akutskiĭ nauchnyĭ t͡sentr. Otdel prikladnoĭ matematiki i vychislitelʹnoĭ tekhniki, ed. Matematicheskie metody sinteza mnogosloĭnykh struktur pri vozdeĭstvii voln. I͡Akutsk: I͡Akutskiĭ nauchnyĭ t͡sentr SO AN SSSR, 1990.
Buscar texto completoGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Structured lattices"
Michelitsch, Thomas M., Alejandro P. Riascos, Bernard A. Collet, Andrzej F. Nowakowski y Franck C. G. A. Nicolleau. "Generalized Space–Time Fractional Dynamics in Networks and Lattices". En Advanced Structured Materials, 221–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_14.
Texto completoPorubov, Alexey V., Alena E. Osokina y Ilya D. Antonov. "Nonlinear Dynamics of Two-Dimensional Lattices with Complex Structure". En Advanced Structured Materials, 309–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_18.
Texto completoMichelitsch, Thomas, Bernard Collet, Alejandro Perez Riascos, Andrzej Nowakowski y Franck Nicolleau. "On Recurrence and Transience of Fractional RandomWalks in Lattices". En Advanced Structured Materials, 555–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_29.
Texto completoDos Reis, Francisco y Jean-François Ganghoffer. "Construction of Micropolar Continua from the Homogenization of Repetitive Planar Lattices". En Advanced Structured Materials, 193–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19219-7_9.
Texto completoTurco, Emilio, Maciej Golaszewski, Ivan Giorgio y Luca Placidi. "Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices?" En Advanced Structured Materials, 285–311. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3764-1_18.
Texto completoTurco, Emilio. "How the Properties of Pantographic Elementary Lattices Determine the Properties of Pantographic Metamaterials". En Advanced Structured Materials, 489–506. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13307-8_33.
Texto completoGoda, Ibrahim, Francisco Dos Reis y Jean-François Ganghoffer. "Limit Analysis of Lattices Based on the Asymptotic Homogenization Method and Prediction of Size Effects in Bone Plastic Collapse". En Advanced Structured Materials, 179–211. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31721-2_9.
Texto completoLoeb, Arthur L. "Lattices and Lattice Complexes". En Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Texto completoBain, Michael. "Structured Features from Concept Lattices for Unsupervised Learning and Classification". En Lecture Notes in Computer Science, 557–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36187-1_49.
Texto completoLyubashevsky, Vadim y Thomas Prest. "Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling in Structured Lattices". En Advances in Cryptology -- EUROCRYPT 2015, 789–815. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46800-5_30.
Texto completoActas de conferencias sobre el tema "Structured lattices"
Chuman, Victor, Filip Milojković, Pol Van Dorpe y Niels Verellen. "Three-Dimensional Sparse Lattices for High-Throughput Fluorescence Microscopy". En Imaging Systems and Applications, IM3G.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im3g.2.
Texto completoCameron, Andrew R., Sandra W. L. Cheng, Sacha Schwarz, Connor Kapahi, Dusan Sarenac, Michael Grabowecky, David G. Cory, Thomas Jennewein, Dmitry A. Pushin y Kevin J. Resch. "Remotely prepared structured wave lattices". En Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4a.3.
Texto completoRogers, Benedict A., Max D. A. Valentine, Elise C. Pegg, Alexander J. G. Lunt y Vimal Dhokia. "Additive Manufacturing of Star Structured Auxetic Lattices With Overhanging Links". En 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93965.
Texto completoLee, Sang Hyun, Ankit Ghiya, Sriram Vishwanath, Sung Soo Hwang y Sunghwan Kim. "Structured dirty-paper coding using low-density lattices". En 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5496012.
Texto completoMejdoub, Mahmoud, Leonardo Fonteles, Chokri BenAmar y Marc Antonini. "Fast indexing method for image retrieval using tree-structured lattices". En 2008 International Workshop on Content-Based Multimedia Indexing. IEEE, 2008. http://dx.doi.org/10.1109/cbmi.2008.4564970.
Texto completoYamane, Keisaku, Kohei Iwasa, Kohei Kakizawa, Kazuhiko Oka, Yasunori Toda y Ryuji Morita. "Generation of intense ultrafast-rotating ring-shaped optical lattices with programmable control of rotational symmetry". En SPIE Technologies and Applications of Structured Light, editado por Takashige Omatsu. SPIE, 2017. http://dx.doi.org/10.1117/12.2275015.
Texto completoChen, Jiangce, Martha Baldwin, Sneha Narra y Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models". En ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Texto completoTang, Tsz Ling Elaine, Yan Liu, Da Lu, Erhan Batuhan Arisoy y Suraj Musuvathy. "Lattice Structure Design Advisor for Additive Manufacturing Using Gaussian Process". En ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67282.
Texto completoArdebili, Mahmoud K., Kerim Tuna Ikikardaslar, Colt Ehrnfeld y Feridun Delale. "3D Printed Cellular Structure Materials Under Impact and Compressive Loading". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23871.
Texto completoAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar y Andreas Schiffer. "Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing". En ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Texto completoInformes sobre el tema "Structured lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England y C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, julio de 2023. http://dx.doi.org/10.47120/npl.mat119.
Texto completoLiu, Keh-Fei y Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1323029.
Texto completoWilliams, James H. y Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada190037.
Texto completoWilliams, James H. y Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada190611.
Texto completoWilliams, James H. y Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1985. http://dx.doi.org/10.21236/ada170316.
Texto completoBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur y A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), noviembre de 1995. http://dx.doi.org/10.2172/179299.
Texto completoParsa, Z. y S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), junio de 1986. http://dx.doi.org/10.2172/1150423.
Texto completoSkowronski, Marek y D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1998. http://dx.doi.org/10.21236/ada354115.
Texto completoWilliams, James H., Nagem Jr. y Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1987. http://dx.doi.org/10.21236/ada185387.
Texto completoHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), mayo de 2023. http://dx.doi.org/10.2172/1975633.
Texto completo