Artículos de revistas sobre el tema "Structural Insights"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Structural Insights.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Structural Insights".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Yates, Darran. "Structural insights". Nature Reviews Neuroscience 22, n.º 4 (5 de marzo de 2021): 195. http://dx.doi.org/10.1038/s41583-021-00453-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gross, Michael. "New structural insights". Current Biology 19, n.º 16 (agosto de 2009): R669—R670. http://dx.doi.org/10.1016/j.cub.2009.08.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kuppuraj, Gopi, Fumiko Suzuki, Masahiko Ikeuchi y Kei Yura. "3P050 Structural insights into enzyme-bound flavin adenine dinucleotides (FAD)(01A. Protein: Structure,Poster)". Seibutsu Butsuri 53, supplement1-2 (2013): S220. http://dx.doi.org/10.2142/biophys.53.s220_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Calderon-Villalobos, L. I., X. Tan, N. Zheng y M. Estelle. "Auxin Perception--Structural Insights". Cold Spring Harbor Perspectives in Biology 2, n.º 7 (26 de mayo de 2010): a005546. http://dx.doi.org/10.1101/cshperspect.a005546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fogg, Christiana N. "Structural insights into RSV". Science 359, n.º 6381 (15 de marzo de 2018): 1227.21–1229. http://dx.doi.org/10.1126/science.359.6381.1227-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ma, Xiaolei, Nazish Sayed, Annie Beuve y Focco van den Akker. "Structural insights into sGC". BMC Pharmacology 7, Suppl 1 (2007): S37. http://dx.doi.org/10.1186/1471-2210-7-s1-s37.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mainstone, Rowland J. "Structural Analysis, Structural Insights, and Historical Interpretation". Journal of the Society of Architectural Historians 56, n.º 3 (septiembre de 1997): 316–40. http://dx.doi.org/10.2307/991244.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tafur, Lucas, Jennifer Kefauver y Robbie Loewith. "Structural Insights into TOR Signaling". Genes 11, n.º 8 (4 de agosto de 2020): 885. http://dx.doi.org/10.3390/genes11080885.

Texto completo
Resumen
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Jin, Sizhuo Chen y Ke Liu. "Structural insights into piRNA biogenesis". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1865, n.º 2 (febrero de 2022): 194799. http://dx.doi.org/10.1016/j.bbagrm.2022.194799.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Yaxin, Guopeng Wang, Ningning Li, Yuxin Wang, Qinyu Zhu, Huarui Chu, Wenjun Wu et al. "Structural insights into immunoglobulin M". Science 367, n.º 6481 (6 de febrero de 2020): 1014–17. http://dx.doi.org/10.1126/science.aaz5425.

Texto completo
Resumen
Immunoglobulin M (IgM) plays a pivotal role in both humoral and mucosal immunity. Its assembly and transport depend on the joining chain (J-chain) and the polymeric immunoglobulin receptor (pIgR), but the underlying molecular mechanisms of these processes are unclear. We report a cryo–electron microscopy structure of the Fc region of human IgM in complex with the J-chain and pIgR ectodomain. The IgM-Fc pentamer is formed asymmetrically, resembling a hexagon with a missing triangle. The tailpieces of IgM-Fc pack into an amyloid-like structure to stabilize the pentamer. The J-chain caps the tailpiece assembly and bridges the interaction between IgM-Fc and the polymeric immunoglobulin receptor, which undergoes a large conformational change to engage the IgM-J complex. These results provide a structural basis for the function of IgM.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Vacca, Irene. "Structural insights into archaeal chromatin". Nature Reviews Microbiology 15, n.º 10 (30 de agosto de 2017): 575. http://dx.doi.org/10.1038/nrmicro.2017.110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Dadley-Moore, Davina. "Structural insights into calicivirus function". Nature Reviews Microbiology 4, n.º 7 (julio de 2006): 490. http://dx.doi.org/10.1038/nrmicro1452.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Nogales, Eva. "Structural Insights into Microtubule Function". Annual Review of Biochemistry 69, n.º 1 (junio de 2000): 277–302. http://dx.doi.org/10.1146/annurev.biochem.69.1.277.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ogle, James M. y V. Ramakrishnan. "STRUCTURAL INSIGHTS INTO TRANSLATIONAL FIDELITY". Annual Review of Biochemistry 74, n.º 1 (junio de 2005): 129–77. http://dx.doi.org/10.1146/annurev.biochem.74.061903.155440.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Nogales, Eva. "Structural Insights into Microtubule Function". Annual Review of Biophysics and Biomolecular Structure 30, n.º 1 (junio de 2001): 397–420. http://dx.doi.org/10.1146/annurev.biophys.30.1.397.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kwon, Eunju, Deepak Pathak, Han-ul Kim, Pawan Dahal, Sung Chul Ha, Seung Sik Lee, Hyeongseop Jeong et al. "Structural insights into stressosome assembly". IUCrJ 6, n.º 5 (21 de agosto de 2019): 938–47. http://dx.doi.org/10.1107/s205225251900945x.

Texto completo
Resumen
The stressosome transduces environmental stress signals to SigB to upregulate SigB-dependent transcription, which is required for bacterial viability. The stressosome core is composed of RsbS and at least one of the RsbR paralogs. A previous cryo-electron microscopy (cryo-EM) structure of the RsbRA–RsbS complex determined under a D2 symmetry restraint showed that the stressosome core forms a pseudo-icosahedron consisting of 60 STAS domains of RsbRA and RsbS. However, it is still unclear how RsbS and one of the RsbR paralogs assemble into the stressosome. Here, an assembly model of the stressosome is presented based on the crystal structure of the RsbS icosahedron and cryo-EM structures of the RsbRA–RsbS complex determined under diverse symmetry restraints (nonsymmetric C1, dihedral D2 and icosahedral I envelopes). 60 monomers of the crystal structure of RsbS fitted well into the I-restrained cryo-EM structure determined at 4.1 Å resolution, even though the STAS domains in the I envelope were averaged. This indicates that RsbS and RsbRA share a highly conserved STAS fold. 22 protrusions observed in the C1 envelope, corresponding to dimers of the RsbRA N-domain, allowed the STAS domains of RsbRA and RsbS to be distinguished in the stressosome core. Based on these, the model of the stressosome core was reconstructed. The mutation of RsbRA residues at the binding interface in the model (R189A/Q191A) significantly reduced the interaction between RsbRA and RsbS. These results suggest that nonconserved residues in the conserved STAS folds between RsbS and RsbR paralogs determine stressosome assembly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Orengo, C. A., F. Pearl, J. Bray, A. Todd y J. M. Thornton. "Functional Insights from Structural Families". Biochemical Society Transactions 28, n.º 1 (1 de febrero de 2000): A22. http://dx.doi.org/10.1042/bst028a022c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Mueller, Kristen L. "Structural insights into capsid flexibility". Science 354, n.º 6318 (15 de diciembre de 2016): 1387.16–1389. http://dx.doi.org/10.1126/science.354.6318.1387-p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Rouzer, Carol A. y Lawrence J. Marnett. "Cyclooxygenases: structural and functional insights". Journal of Lipid Research 50, Supplement (23 de octubre de 2008): S29—S34. http://dx.doi.org/10.1194/jlr.r800042-jlr200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Rintala-Dempsey, Anne C., Atoosa Rezvanpour y Gary S. Shaw. "S100-annexin complexes - structural insights". FEBS Journal 275, n.º 20 (15 de septiembre de 2008): 4956–66. http://dx.doi.org/10.1111/j.1742-4658.2008.06654.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sagong, Hye-Young, Hyeoncheol Francis Son, So Young Choi, Sang Yup Lee y Kyung-Jin Kim. "Structural Insights into Polyhydroxyalkanoates Biosynthesis". Trends in Biochemical Sciences 43, n.º 10 (octubre de 2018): 790–805. http://dx.doi.org/10.1016/j.tibs.2018.08.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Berger, Imre, Alexandre G. Blanco, Rolf Boelens, Jean Cavarelli, Miquel Coll, Gert E. Folkers, Yan Nie et al. "Structural insights into transcription complexes". Journal of Structural Biology 175, n.º 2 (agosto de 2011): 135–46. http://dx.doi.org/10.1016/j.jsb.2011.04.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Alcorlo, Martín, Andrés López-Perrote, Sandra Delgado, Hugo Yébenes, Marta Subías, César Rodríguez-Gallego, Santiago Rodríguez de Córdoba y Oscar Llorca. "Structural insights on complement activation". FEBS Journal 282, n.º 20 (31 de agosto de 2015): 3883–91. http://dx.doi.org/10.1111/febs.13399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Shamoo, Y. "Structural insights into BRCA2 function". Current Opinion in Structural Biology 13, n.º 2 (abril de 2003): 206–11. http://dx.doi.org/10.1016/s0959-440x(03)00033-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Toor, Navtej, Kevin S. Keating y Anna Marie Pyle. "Structural insights into RNA splicing". Current Opinion in Structural Biology 19, n.º 3 (junio de 2009): 260–66. http://dx.doi.org/10.1016/j.sbi.2009.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Sashital, Dipali G. y Jennifer A. Doudna. "Structural insights into RNA interference". Current Opinion in Structural Biology 20, n.º 1 (febrero de 2010): 90–97. http://dx.doi.org/10.1016/j.sbi.2009.12.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Glatt, Sebastian y Christoph W. Müller. "Structural insights into Elongator function". Current Opinion in Structural Biology 23, n.º 2 (abril de 2013): 235–42. http://dx.doi.org/10.1016/j.sbi.2013.02.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sosa, Brian A., Ulrike Kutay y Thomas U. Schwartz. "Structural insights into LINC complexes". Current Opinion in Structural Biology 23, n.º 2 (abril de 2013): 285–91. http://dx.doi.org/10.1016/j.sbi.2013.03.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ergun, Sabrina L. y Lingyin Li. "Structural Insights into STING Signaling". Trends in Cell Biology 30, n.º 5 (mayo de 2020): 399–407. http://dx.doi.org/10.1016/j.tcb.2020.01.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Xue, Xiaoguang, Jin Wu, Federico Forneris, Daniel Ricklin, Patrizia Di Crescenzio, Christoph Schmidt, Joke Granneman, John D. Lambris y Piet Gros. "Structural insights into cofactor activity". Immunobiology 221, n.º 10 (octubre de 2016): 1193. http://dx.doi.org/10.1016/j.imbio.2016.06.152.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Stauch, Benjamin, Linda C. Johansson y Vadim Cherezov. "Structural insights into melatonin receptors". FEBS Journal 287, n.º 8 (23 de noviembre de 2019): 1496–510. http://dx.doi.org/10.1111/febs.15128.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Dorwart, Michael, Patrick Thibodeau y Philip Thomas. "Cystic fibrosis: recent structural insights". Journal of Cystic Fibrosis 3 (agosto de 2004): 91–94. http://dx.doi.org/10.1016/j.jcf.2004.05.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Forouhar, Farhad, Alexandre Kuzin, Jayaraman Seetharaman, Insun Lee, Weihong Zhou, Mariam Abashidze, Yang Chen et al. "Functional insights from structural genomics". Journal of Structural and Functional Genomics 8, n.º 2-3 (23 de junio de 2007): 37–44. http://dx.doi.org/10.1007/s10969-007-9018-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ling, Clarence y Dmitri N. Ermolenko. "Structural insights into ribosome translocation". Wiley Interdisciplinary Reviews: RNA 7, n.º 5 (27 de abril de 2016): 620–36. http://dx.doi.org/10.1002/wrna.1354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zabret, Jure, Stefan Bohn, Sandra K. Schuller, Oliver Arnolds, Madeline Möller, Jakob Meier-Credo, Pasqual Liauw et al. "Structural insights into photosystem II assembly". Nature Plants 7, n.º 4 (abril de 2021): 524–38. http://dx.doi.org/10.1038/s41477-021-00895-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Suarez, Irina y Gilles Trave. "Structural Insights in Multifunctional Papillomavirus Oncoproteins". Viruses 10, n.º 1 (15 de enero de 2018): 37. http://dx.doi.org/10.3390/v10010037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Roberts, George W. y David Leys. "Structural insights into UbiD reversible decarboxylation". Current Opinion in Structural Biology 75 (agosto de 2022): 102432. http://dx.doi.org/10.1016/j.sbi.2022.102432.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Thomas, Tim. "Structural and mechanical insights into cystinosin". Nature Structural & Molecular Biology 29, n.º 10 (octubre de 2022): 955. http://dx.doi.org/10.1038/s41594-022-00845-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Frank, Filipp, Eric A. Ortlund y Xu Liu. "Structural insights into glucocorticoid receptor function". Biochemical Society Transactions 49, n.º 5 (28 de octubre de 2021): 2333–43. http://dx.doi.org/10.1042/bst20210419.

Texto completo
Resumen
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Zhao, Yuguang, Fredrik Svensson, David Steadman, Sarah Frew, Amy Monaghan, Magda Bictash, Tiago Moreira et al. "Structural Insights into Notum Covalent Inhibition". Journal of Medicinal Chemistry 64, n.º 15 (22 de julio de 2021): 11354–63. http://dx.doi.org/10.1021/acs.jmedchem.1c00701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Lundstrøm, Jon y Daniel Bojar. "Structural insights into host–microbe glycointeractions". Current Opinion in Structural Biology 73 (abril de 2022): 102337. http://dx.doi.org/10.1016/j.sbi.2022.102337.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wang, Lili, Haoran Zhang, Panjing Lv, Yan Li, Maikun Teng, Yahui Liu y Donghai Wu. "Structural Insights into Mouse H-FABP". Life 12, n.º 9 (16 de septiembre de 2022): 1445. http://dx.doi.org/10.3390/life12091445.

Texto completo
Resumen
Intracellular fatty acid-binding proteins are evolutionarily highly conserved proteins. The major functions and responsibilities of this family are the regulation of FA uptake and intracellular transport. The structure of the H-FABP ortholog from mouse (Mus musculus) had not been revealed at the time this study was completed. Thus, further exploration of the structural properties of mouse H-FABP is expected to extend our knowledge of the model animal’s molecular mechanism of H-FABP function. Here, we report the high-resolution crystal structure and the NMR characterization of mouse H-FABP. Our work discloses the unique structural features of mouse H-FABP, offering a structural basis for the further development of small-molecule inhibitors for H-FABP.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Elliott, Richard M. "Orthobunyaviruses: recent genetic and structural insights". Nature Reviews Microbiology 12, n.º 10 (8 de septiembre de 2014): 673–85. http://dx.doi.org/10.1038/nrmicro3332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Hendrickson, W. A., E. Martinez-Hackert y Q. Liu. "Structural insights into molecular chaperone activity". Acta Crystallographica Section A Foundations of Crystallography 64, a1 (23 de agosto de 2008): C15. http://dx.doi.org/10.1107/s0108767308099571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Oliva, Maria A., Suzanne C. Cordell y Jan Löwe. "Structural insights into FtsZ protofilament formation". Nature Structural & Molecular Biology 11, n.º 12 (21 de noviembre de 2004): 1243–50. http://dx.doi.org/10.1038/nsmb855.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sakmar, Thomas P., Santosh T. Menon, Ethan P. Marin y Elias S. Awad. "Rhodopsin: Insights from Recent Structural Studies". Annual Review of Biophysics and Biomolecular Structure 31, n.º 1 (junio de 2002): 443–84. http://dx.doi.org/10.1146/annurev.biophys.31.082901.134348.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Herbst, Sabine, Noa Lipstein, Olaf Jahn y Andrea Sinz. "Structural insights into calmodulin/Munc13 interaction". Biological Chemistry 395, n.º 7-8 (1 de julio de 2014): 763–68. http://dx.doi.org/10.1515/hsz-2014-0134.

Texto completo
Resumen
Abstract Munc13 proteins are essential presynaptic regulators that mediate synaptic vesicle priming and play a role in the regulation of neuronal short-term synaptic plasticity. All four Munc13 isoforms share a common domain structure, including a calmodulin (CaM) binding site in their otherwise divergent N-termini. Here, we summarize recent results on the investigation of the CaM/Munc13 interaction. By combining chemical cross-linking, photoaffinity labeling, and mass spectrometry, we showed that all neuronal Munc13 isoforms exhibit similar CaM binding modes. Moreover, we demonstrated that the 1-5-8-26 CaM binding motif discovered in Munc13-1 cannot be induced in the classical CaM target skMLCK, indicating unique features of the Munc13 CaM binding motif.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Moiseenkova-Bell, Vera. "Structural Insights into TRPV Channel Gating". FASEB Journal 34, S1 (abril de 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.00174.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Karakas, Erkan, Heather L. Wilson, Tyler N. Graf, Song Xiang, Sandra Jaramillo-Busquets, K. V. Rajagopalan y Caroline Kisker. "Structural Insights into Sulfite Oxidase Deficiency". Journal of Biological Chemistry 280, n.º 39 (27 de julio de 2005): 33506–15. http://dx.doi.org/10.1074/jbc.m505035200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Harrison, Charlotte. "Structural insights into allosteric GPCR drugs". Nature Reviews Drug Discovery 12, n.º 12 (29 de noviembre de 2013): 906. http://dx.doi.org/10.1038/nrd4188.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía