Libros sobre el tema "Stress response protein p66ShcA"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Stress response protein p66ShcA.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 20 mejores mejores libros para su investigación sobre el tema "Stress response protein p66ShcA".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

The unfolded protein response und cellular stress. Amsterdam [etc.]: Elsevier, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Conn, P. Michael. The unfolded protein response and cellular stress. Amsterdam [etc.]: Elsevier, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Conn, P. Michael. Methods in enzymology: The unfolded protein response and cellular stress. Amsterdam: Elsevier, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Conn, P. Michael. Unfolded Protein Response and Cellular Stress, Part C. Elsevier Science & Technology Books, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Conn, P. Michael. Unfolded Protein Response and Cellular Stress, Part B. Elsevier Science & Technology Books, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Conn, P. Michael. Unfolded Protein Response and Cellular Stress, Part A. Elsevier Science & Technology Books, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

The Unfolded Protein Response and Cellular Stress, Part A. Elsevier, 2011. http://dx.doi.org/10.1016/c2010-0-66637-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

The Unfolded Protein Response and Cellular Stress, Part B. Elsevier, 2011. http://dx.doi.org/10.1016/c2010-0-66638-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

The Unfolded Protein Response and Cellular Stress, Part C. Elsevier, 2011. http://dx.doi.org/10.1016/c2010-0-66908-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Csermely, Peter y László Vígh. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Springer London, Limited, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Csermely, Peter y László Vígh. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Springer, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

(Editor), K. B. Storey y J. M. Storey (Editor), eds. Cell and Molecular Response to Stress : Protein Adaptations and Signal Transduction (North-Holland Mathematical Library,). Elsevier Science, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

(Editor), Peter Csermely y László Vígh (Editor), eds. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks (Advances in Experimental Medicine and Biology). Springer, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Raju, Raghavan y Irshad H. Chaudry. The host response to hypoxia in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0305.

Texto completo
Resumen
The hypoxic response of the host is complex. While the oxygen-sensing intracellular machinery attempts to restore cellular homeostasis by augmenting respiration and blood flow, events such as severe haemorrhage lead to whole body hypoxia and decreased mitochondrial function. Immunological perturbations following severe haemorrhage may result in multiple organ dysfunction and sepsis, while impaired perfusion may lead to microvascular injury and local hypoxia. Trauma-haemorrhage or hypoxic exposure in animals causes a systemic inflammatory response, decreased antigen presentation by peritoneal macrophages, hypoxaemia and initiation of endoplasmic reticulum stress. In response, the protein level of the oxygen-sensing transcription factor, hypoxia inducible factor (HIF)-1 increases; this leads to the regulation of expression of a number of genes resulting in decreased mitochondrial ATP production, but enhanced glycolytic processes, thus shifting the energy balance. In addition, sustained tissue hypoxia leads to increased free radical production and cellular apoptosis. Though the initial host response to hypoxia may be protective, sustained hypoxia becomes detrimental to the tissues and the organism as a whole.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Wise, Matt y Paul Frost. Nutritional support in the critically ill. Editado por Patrick Davey y David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0334.

Texto completo
Resumen
Major injury evokes a constellation of reproducible hormonal, metabolic, and haemodynamic responses which are collectively termed ‘the adaptive stress response’. The purpose of the adaptive stress response is to facilitate tissue repair and restore normal homeostasis. If critical illness is prolonged, the adaptive stress response may become maladaptive, in essence exerting a parasitic effect leaching away structural proteins and impairing host immunity. Primarily therapy should be directed towards the underlying illness, as nutritional support per se will not reverse the stress response and its sequelae. Nonetheless, adequate nutritional support in the early stages of critical illness may attenuate protein catabolism and its adverse effects. This chapter covers nutritional assessment; detection of malnutrition; energy and protein requirements; monitoring the effectiveness of nutritional replacements; nutritional delivery; complications; and refeeding syndrome.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Siebert, Stefan, Sengupta Raj y Alexander Tsoukas. The genetics of axial spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0004.

Texto completo
Resumen
Family and twin studies have long suggested a large genetic component in ankylosing spondylitis (AS). The genetic association with HLA-B27 remains one of the strongest single gene variant associations reported in any complex polygenic disease. The exact mechanism by which HLA-B27 contributes to AS remains unknown, with three main theories proposed: the arthritogenic peptide, endoplasmic reticulum stress with unfolded protein response, and homodimerization theories. Genome-wide association studies have identified a number of other important susceptibility genes for AS, several of which overlap with other spondyloarthritis conditions. Of these, ERAP1 and IL-23R, are covered in more detail, highlighting their functional importance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

McFarland, Daniel C. y Jimmie Holland. Depression and Cancer. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190603342.003.0006.

Texto completo
Resumen
The relationship between depression and cancer has long captured the imagination of clinicians and the lay population. Therefore, the science behind this putative relationship is paramount to determine reality from myth. This chapter begins with a historical and relevant clinical overview from within the context of psycho-oncology and psychoneuroimmunology. An exploration of the association between cancer and depression follows by reviewing cancer initiation and progression data in the context of depression. Biological correlates of the stress response in depression, inflammation, and its effects on cancer are presented. Social attributes to these biological phenomena are also evaluated through the putative mechanisms of epigenetics and the stress response. The strongest data for the relationship between depression and cancer fall into four distinct areas: (1) the cytokine hypothesis of depression; (2) dysregulation of the HPA, glucocorticoids, and diurnal circadian rhythms; (3) enhanced sympathetic nervous system activity; and (4) alterations in DNA protein transcription/epigenetics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Lev, Shaul y Pierre Singer. Enteral nutrition in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0206.

Texto completo
Resumen
Enteral nutrition (EN) is an integral part of the patient care in the intensive care unit (ICU) in order to maintain gut integrity, to modulate stress and the systemic immune response, and to attenuate disease severity. The timing of commencing EN in critically-ill patients depends on patient status and should be initiated as soon as the patient is stabilized. The energy and protein targets should be estimated and the feed prescription should match the nutritional target. The rate of EN dose increment or the addition of supplemental parenteral nutrition (PN) to reach the nutritional target is still debatable and ranges between 3 days (ESPEN approach) and up to 8 days (ASPEN approach). Micronutrients should be supplemented to all patients. The role of pharmaconutrition is controversial due to recent negative trials, but the use of EN with supplemental omega-3 and GLA for acute respiratory distress syndrome patients is still advocated by ESPEN and ASPEN guidelines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Nicholson, Grainne y George M. Hall. Neuroendocrine physiology in anaesthetic practice. Editado por Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0008.

Texto completo
Resumen
This chapter describes the hormonal, metabolic, and inflammatory response to surgery—commonly known as the surgical stress response. The changes in protein, carbohydrate, and fat metabolism to provide fuel for oxidation are outlined as well as changes in salt and water metabolism. Psychological sequelae of fatigue and malaise are also common in patients undergoing surgery. Attenuating the metabolic and endocrine changes associated with surgery may reduce postoperative morbidity and expedite recovery; the choice of anaesthetic drugs and techniques (regional vs general anaesthesia) and the increasing use of laparoscopic surgery have all been used to try to achieve this objective. The most common metabolic disease which anaesthetists have to manage is diabetes mellitus (DM) and its pathophysiology and medical management, as well as that of the related metabolic syndrome are discussed. Adrenal tumours are rare but usually require surgical excision. Phaeochromocytomas present unique anaesthetic challenges, but pre-, intra-, and postoperatively in terms of fluid management and blood pressure control. Conn’s syndrome (primary hyperaldosteronism) can also result in hypertension and electrolyte disturbances. Cushing’s disease (glucocorticoid excess) presents with the clinical effects of steroid excess and many patients have concomitant DM. Finally, perioperative steroid supplementation for patients already taking steroids and undergoing surgery is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Clarke, Andrew. Freezing. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0006.

Texto completo
Resumen
Freezing is a widespread ecological challenge, affecting organisms in over half the terrestrial environment as well as both polar seas. With very few exceptions, if a cell freezes internally, it dies. Polar teleost fish in shallow waters avoid freezing by synthesising a range of protein or glycoprotein antifreezes. Terrestrial organisms are faced with a far greater thermal challenge, and exhibit a more complex array of responses. Unicellular organisms survive freezing temperatures by preventing ice nucleating within the cytosol, and tolerating the cellular dehydration and membrane disruption that follows from ice forming in the external environment. Multicellular organisms survive freezing temperatures by manipulating the composition of the extracellular body fluids. Terrestrial organisms may freeze at high subzero temperatures, often promoted by ice nucleating proteins, and small molecular mass cryoprotectants (often sugars and polyols) moderate the osmotic stress on cells. A range of chaperone proteins (dehydrins, LEA proteins) help maintain the integrity of membranes and macromolecules. Thermal hysteresis (antifreeze) proteins prevent damaging recrystallisation of ice. In some cases arthropods and higher plants prevent freezing in their extracellular fluids and survive by supercooling. Vitrification of extracellular water, or of the cell cytosol, may be a more widespread response to very cold temperatures than recognised to date.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía