Literatura académica sobre el tema "Strength of materials"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Strength of materials".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Strength of materials"

1

Levy, E. "Advanced Materials—From Strength to Strength". Advanced Materials 14, n.º 15 (5 de agosto de 2002): 1019. http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1019::aid-adma1019>3.0.co;2-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhu, Ting y Ju Li. "Ultra-strength materials". Progress in Materials Science 55, n.º 7 (septiembre de 2010): 710–57. http://dx.doi.org/10.1016/j.pmatsci.2010.04.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Almuammar, Majed, Allen Schulman y Fouad Salama. "Shear bond strength of six restorative materials". Journal of Clinical Pediatric Dentistry 25, n.º 3 (1 de abril de 2001): 221–25. http://dx.doi.org/10.17796/jcpd.25.3.r8g48vn51l46421m.

Texto completo
Resumen
The purpose of this study was to determine and compare the shear bond strength of a conventional glassionomer cement, a resin modified glass-ionomer, a composite resin and three compomer restorative materials. Dentin of the occlusal surfaces from sixty extracted human permanent molars were prepared for shear bond strength testing. The specimens were randomly divided into six groups of 10 each. Dentinal surfaces were treated according to the instructions of manufacturers for each material. Each restorative material was placed inside nylon cylinders 2 mm high with an internal diameter of 3 mm, which were placed perpendicular to dentin surfaces. Shear bond strengths were determined using an Universal Testing Machine at crosshead speed of 0.5 mm/min in a compression mode. Conventional glass-ionomer, Ketac-Molar aplicap showed the lowest mean shear bond strength 3.77 ± 1.76 (X ± SD MPa) and the composite resin, Heliomolar showed the highest mean shear bond strength 16.54 ± 1.65 while the mean bond strength of Fuji II LC was 9.55 ± 1.06. The shear bond strengths of compomer restorative materials were 12.83 ± 1.42, 10.64 ± 1.42 and 11.19 ± 1.19 for Compoglass, Hytac and Dyract respectively. ANOVA revealed statistically significant differences in the mean shear bond strengths of all groups (P&lt;0.001). No statistically significant difference was found between the three compomer materials (P&gt;0.5). Ketac-Molar and composite resin showed statistically significant difference (P&lt;0.0005). The mode of fracture varied between materials. It is concluded that the compomer restorative materials show higher shear bond strength than conventional glass-ionomer and resin modified glass-ionomer, but less than composite resin. The fracture mode is not related to the shear bond strengths values.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Osakue, Edward y Lucky Anetor. "Estimating beam strength of metallic gear materials". FME Transactions 50, n.º 4 (2022): 587–606. http://dx.doi.org/10.5937/fme2204587o.

Texto completo
Resumen
Expressions for the pulsating or beam strengths of many popular metallic gear materials are derived based on the tensile strength and endurance ratio. The strength values predicted are for a reliability of 99% at load cycles corresponding to that of the endurance strength of the materials. The expressions are based on the consideration of the revised Lewis gear root stress formula by treating the design parameters as random variables associated with the lognormal probability density function and application of the Gerber fatigue failure rule. Pulsating strength predictions are compared with those of AGMA estimates for through-hardened steels and other materials. The variances between model predictions and AGMA values for steel and ductile cast iron materials are reasonably low. Low variances between model and AGMA values for high-strength gray cast iron and cast bronze were also observed. However, high variances between model and AGMA values for low-strength gray cast iron and cast bronze were found. Overall, the model estimates are considered sufficiently accurate for preliminary design applications where initial sizes of gears are generated. The study showed that for many metallic gear materials, the average pulsating strength ratio is 0.36 at 99% reliability. Therefore, the suggestion by Buckingham, that the fatigue strength of a gear tooth is approximately one-third (0.333) of the tensile strength of the material is justified.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Armitage, Catherine. "Materials science shows strength". Nature 595, n.º 7865 (30 de junio de 2021): S1. http://dx.doi.org/10.1038/d41586-021-01786-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Carpinteri, Alberto, Pietro Cornetti, Nicola Pugno y Alberto Sapora. "Strength of hierarchical materials". Microsystem Technologies 15, n.º 1 (12 de junio de 2008): 27–31. http://dx.doi.org/10.1007/s00542-008-0644-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kanel, G. I. "Dynamic strength of materials". Fatigue & Fracture of Engineering Materials & Structures 22, n.º 11 (noviembre de 1999): 1011. http://dx.doi.org/10.1046/j.1460-2695.1999.00246.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tsybul’ko, A. E. y E. A. Romanenko. "Strength of isotropic materials". Russian Engineering Research 29, n.º 2 (febrero de 2009): 136–38. http://dx.doi.org/10.3103/s1068798x09020075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Trejo, David, Kevin Folliard y Lianxiang Du. "Alternative Cap Materials for Evaluating the Compressive Strength of Controlled Low-Strength Materials". Journal of Materials in Civil Engineering 15, n.º 5 (octubre de 2003): 484–90. http://dx.doi.org/10.1061/(asce)0899-1561(2003)15:5(484).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Larionov, Evgeny. "A long-term strength of constructive materials". MATEC Web of Conferences 251 (2018): 04068. http://dx.doi.org/10.1051/matecconf/201825104068.

Texto completo
Resumen
A long-term strength materials under an axially loading of constructive elements is considered and the estimates of this strength are reduced. The proposed approach is connected with the notion so-called energy of entirety [1]. It is notable that this value can be used instead of known Reiner’s invariant [2]. A material (concrete, steel, graph) is considered as a union of its links with statistical disturbed strengths [3]. This conception allows to modify Boltzmann’s principle superposition of fraction creep deformations [4] and in addition, implies the identity of non-linear stresses function for the instantaneous and retarding deformations. The degeneration of long-term strength because of vibrational influence take into account and the strengthening of the materials in the course of their formation is considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Strength of materials"

1

Soutsos, Marios Nicou. "Mix design, workability heat evolution and strength development of high strength concrete". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308062.

Texto completo
Resumen
A literature survey of the properties and uses of high strength concrete, defined for this study as having a strength in excess of 60 N/tnm2, has shown that of prime need is a systematic, reproducible procedure for attaining high strength concrete. The "Maximum Density Theory", i.e. the requirement that the aggregate occupies as large a relative volume as possible, has been adopted as an approach to optimisation of the mix proportions. However, this does not consider the effect that the aggregate suIface area has on the requirement of excess paste for lubrication. To investigate the combined effect of void content and surface area, mixes with lower sand proportions than that required for minimum void content were tested for slump. The optimum sand proportion is the one that produces the highest slump, for a particular cement content. This procedure has been called: "The Modified Maximum Density Theory". Having thus optimised the cement and aggregate contents, partial cement replacement by mineral admixtures, at low water-cement ratios, has been investigated in order to assess: a) their contribution to long term strengths, b) their contribution to reducing the heat evolution of concrete mixes, and c) their effect on the workability of concrete. Condensed silica fume (at replacement levels of up to 15%) produced higher compressive strengths than ordinary Portland cement. Ground granulated blast furnace slag (at replacement levels of up to 30%) can be used without decreasing the 28-day strength. Replacement by 20% pulverised fuel ash resulted in a 15% decrease in the 28-day strength and equal strength to ordinary Portland cement concrete at ages beyond 56-days. Temperature measurements during hydration, under adiabatic conditions, have however shown that these replacement levels do not lower the temperature rise at a water-binder ratio of 0.26. The higher levels required for significant temperature reduction will also cause a significant reduction in the strength. To offset this ground granulated blast furnace slag (58%) and pulverised fuel ash (36%) in combination with 10% condensed silica fume 4 were used. These combinations reduced the temperature rise by more than 10°C while the reduction in the 28-day compressive strength was less than 15%. Partial cement replacement by pulverised fuel ash and ground granulated blast furnace slag improved the workability and therefore allowed a reduction in the superplasticiser dosage required for a given slump. The use of condensed silica fume reduces the workability at low superplasticiser dosages, but it has a water-reducing effect above a certain superplasticiser dosage. Results from these studies have been used to formulate guidelines for the proportioning of materials for producing high strength concrete.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Congwei. "On the strength of defective graphene materials". Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9065.

Texto completo
Resumen
Graphene is the first 2D material consisting of carbon atoms densely packed into planar structures. Graphene oxide (GO) is the intermediate derivative of chemically-produced graphene, which retains 2D basal plane structures but is also decorated with functional groups along the basal plane and edges. This functionality allows self-assembly of planar sheets into a paper-like material. However, formations of both intrinsic defects within the sheet structures as well as larger scale extrinsic defects in the paper are expected to significantly degrade mechanical performance. Strength provides the most direct evidence of defect related mechanical behaviour and is therefore targeted for understanding defect effects in GO paper. Such evaluations are crucial both from a technological perspective of realizing designed functions and from a fundamental interest in understanding structure-mechanics in 2D nanomaterials. A complete strategy of performing mechanical testing at different length scales is thus reported to provide a comprehensive description of GO strength. Both conventional larger scale mechanical testing as well as novel smaller length scale evaluations, using in situ atomic force microscopy (AFM) combined with scanning electron microscopy (SEM) and optical microscopy as well as structural probing using synchrotron FT-IR microspectroscopy, were applied to GO materials. Results showed that large structural defects determined mechanical properties of GO papers due to stress concentration effects whereas smaller scale intrinsic effects were defined by interfacial defects and stress concentrations within sheets. Synchrotron FT-IR microspectroscopy provided molecular deformation mechanisms in GO paper, which highlighted the interaction between in-plane C=C and cross-linking C=O bonds. A comprehensive description of macroscopic GO paper using evaluations of strength at the range of length scales studied was attempted, with a good correlation between predictions and experimental observations. This thesis therefore provides a hierarchical understanding of the defects impact on the strength of graphene-based materials from the macroscale to the nanoscale.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bi, Wu. "Racking Strength of Paperboard Based Sheathing Materials". Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1091059928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Stone, Robert Michael 1957. "Strength and stiffness of cellular foamed materials". Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/289577.

Texto completo
Resumen
The use of cellular foams as a core material in light-weight optical and structural systems is of considerable interest. Research and development of these systems, however, have been hampered by the lack of material property data and uncertainty in the use of various suggested material characterizations and the associated constants of proportionality. ASTM standards were researched and, for the most part, found inadequate for testing cellular foam materials. The compression, tension and shear test methods developed are presented, as well as the results from physical tests on closed-cell SXATM foam specimens. Based on the test results, material characterizations are presented. Additionally, a parametric study was performed to investigate the behavior of open and closed-cell foams. Twenty-one (21) finite element models were built and seventy (70) analyses were performed to study the effects of cell geometry. Based on the FEA results, material characterizations are presented for the cubic array and the tetrakaidecahedron geometry. The FEA results are compared with the characterizations proposed by Gibson and Ashby and the test results. The validity of the scaling laws are confirmed; however, the proposed constants of proportionality overestimate the modulii a minimum of 50%. New constants are presented for both open-cell and closed-cell foams, as well as additional insights into the effects of cell shape on Poisson's ratio.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Violette, Melanie Glenn. "Time-dependent compressive strength of unidirectional viscoelastic composite materials /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wen, Edward A. "Compressive strength prediction for composite unmanned aerial vehicles". Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=959.

Texto completo
Resumen
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains ix, 117 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 83-84).
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yeung, Conson. "Fracture statistics of brittle materials /". View the Table of Contents & Abstract, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31490323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

楊光俊 y Conson Yeung. "Fracture statistics of brittle materials". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B45015211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Altzar, Oskar. "Surface Characteristics and Their Impact on Press Joint Strength". Thesis, KTH, Mekanisk metallografi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205919.

Texto completo
Resumen
Press fitting is a commonly used method in the assembly of shafts and gearwheels in gearboxes andare using the friction created between them to hold them together. To increase productivity Scania CVAB in Södertälje, Sweden, are going to replace the current hard machining method for layshafts. Whiletesting the new methods in rig it occurred that the gearwheel slipped in tangential direction towardsthe layshaft at a lower torque then with the current method even through all requirements on thelayshafts surface was meet. The purpose and aim with this study is to investigate differences betweenthe methods and to find new requirements for the layshaft. The torque of slip, (Ms) established in atorque test rig and analysis of surface roughness, hardness and microstructure conducted of both thelayshafts and gearwheels. The characteristics of the layshaft surface was also analysed and comparedbetween the different hard machining methods. The study concludes that no correlation between thesurface parameters and the Ms occurred and no major differences in the material between themethods. The study also concluded that the Ms between the layshaft and gearwheel is lower if thelayshaft surface is harder and smoother than the gearwheel surface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Case, Scott Wayne. "Micromechanics of strength-related phenomena in composite materials". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09122009-040447/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Strength of materials"

1

Alexander, J. M. Strength of materials. Chichester: Ellis Horwood, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bhaskar, K. y T. K. Varadan. Strength of Materials. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-06377-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Singh, D. K. Strength of Materials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59667-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kozachenko, A. B. Strength of materials. Moscow: Mir Publishers, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mendes, Gustavo y Bruno Lago. Strength of materials. New York: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pytel, Andrew. Strength of materials. 4a ed. New York: Harper & Row, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gustavo, Mendes y Lago Bruno, eds. Strength of materials. Hauppauge, NY, USA: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Singer, Ferdinand L. Strength of materials. 4a ed. New York: Harper & Row, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alexander, J. M. Strength of materials. New York: Prentice-Hall, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mott, Robert L. Applied strength of materials. 5a ed. Upper Saddle River, N.J: Pearson/Prentice Hall, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Strength of materials"

1

Rumpel, G. y H. D. Sondershausen. "Strength of Materials". En Dubbel Handbook of Mechanical Engineering, B1—B76. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-3566-1_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lucas, George L., Francis W. Cooke y Elizabeth A. Friis. "Strength of Materials". En A Primer of Biomechanics, 36–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8487-6_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chaskalovic, Joël. "Strength of Materials". En Mathematical and Numerical Methods for Partial Differential Equations, 251–311. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nichols, Daniel H. "Strength of Materials". En Physics for Technology, 123–36. Second edition. | Boca Raton : CRC Press, Taylor & Francis: CRC Press, 2018. http://dx.doi.org/10.1201/9781351207270-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bozzuto, Carl. "Strength of Materials". En Boiler Operator's Handbook, 251–56. 3a ed. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207368-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Singh, Dinesh Kumar. "Mechanical Testing of Materials". En Strength of Materials, 857–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Singh, Dinesh Kumar. "Simple Stresses and Strains". En Strength of Materials, 1–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Singh, D. K. "Theory of Elastic Failure". En Strength of Materials, 433–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Singh, D. K. "Buckling of Columns". En Strength of Materials, 459–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Singh, Dinesh Kumar. "Pressure Vessels". En Strength of Materials, 495–564. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Strength of materials"

1

"Confined Concrete with High-Strength Materials". En SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5896.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

"Shear Strength of Beam-Column Joints with High-Strength Materials". En SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5906.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pham, Minh-Son. "High-strength and programmable materials". En Emerging Imaging and Sensing Technologies for Security and Defence V; Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III, editado por Maria Farsari, John G. Rarity, Francois Kajzar, Attila Szep, Richard C. Hollins, Gerald S. Buller, Robert A. Lamb et al. SPIE, 2020. http://dx.doi.org/10.1117/12.2574065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

"Low-Strength Concrete and Controlled Low-Strength Material (CLSM) Produced With Class F Fly Ash". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

"Strength Development Characteristics of High-Strength Concrete Incorporating Supplementary Cementing Materials". En SP-121: High-Strength Concrete: Second International Symposium. American Concrete Institute, 1990. http://dx.doi.org/10.14359/2564.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

"Soil-Cement Slurry Pipe Embedment". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

"Flowable Backfill for Pipeline Bedding at the Denver International Airport". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

"Durability Factors Affecting CLSM". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

"Freezing and Thawing Durability and Early Set and Strength Development of CLSM". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

"Optimization of Flowable Fill Mix Proportions". En SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Strength of materials"

1

Thompson, A. W., I. M. Bernstein y A. Voelkel. Fundamentals of Interfacial Strength in Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1987. http://dx.doi.org/10.21236/ada198626.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vasudevan, Vijay K. y Jainagesh A. Sekhar. Lightweight, High-Strength, Age-Hardenable Nanoscale Materials. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2004. http://dx.doi.org/10.21236/ada422041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Aksay, I. A., G. C. Stangle, D. M. Dabbs y M. Sarikaya. Microdesigning of Lightweight/High Strength Ceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, julio de 1989. http://dx.doi.org/10.21236/ada238935.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Thompson, A. W. y I. M. Bernstein. Fundamentals of Interfacial Strength in Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1990. http://dx.doi.org/10.21236/ada226701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

فائق صديق العبيدي, خالد. Strength of Materials in Quran And Sunna. Academic Journal of Scientific Miracles, noviembre de 2015. http://dx.doi.org/10.19138/ejaz.37.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Green, Brian H. Development of Soil-Based Controlled Low-Strength Materials. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1999. http://dx.doi.org/10.21236/ada374305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lynk, John. PR-610-163756-WEB Material Strength Verification. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2019. http://dx.doi.org/10.55274/r0011573.

Texto completo
Resumen
DATE: Tuesday, April 30, 2019 TIME: 11:00 a.m. ET CLICK THE DOWNLOAD/BUY BUTTON TO ACCESS THE WEBINAR REGISTRATION LINK Join the PRCI Integrity and Inspection technical committee for a pipeline operator driven discussion regarding PRCI research related to non-destructive technologies for the purpose of pipe material verification and how operators have applied this research in the field. This webinar will include; research project overview, operator case studies and analysis of current technology gaps. Panelists: Mark Piazza, Manager Pipeline Compliance and R and D, Colonial Pipeline Company Mike Kern, Director of Gas Transmission Engineering, National Grid Oliver Burkinshaw, Senior Materials Engineer, ROSEN Simon Bellemare, Founder and CEO of Massachusetts Materials Technologies John Lynk, Program Manager, Integrity and Inspection and Subsea Technical Committees, PRCI Expected Benefits/Learning Outcomes: - In-ditch non-destructive evaluation for material yield strength that has been utilized on in-service lines to confirm incomplete records of pipe grades and/or to evaluate acquired assets - How the data has been utilized to collect opportunistic data as part of external corrosion direct assessments to provide a basis for maximum allowable operating pressure, as well as prioritizing and setting criteria for further inspection and potential capital projects. - The ability to differentiate specific manufacturing processes, such as low frequency and high frequency electro-resistance welded longitudinal seams, have been successfully applied on a number of pipeline integrity projects - Enhancement of inline inspection technologies combined with verification digs have demonstrated the potential to apply pipe joint specific strength data in fitness-for-service, as opposed to lower minimum values set by pipe grade or by nominal conservative assumptions. Who should attend: - Pipeline integrity engineers, specialists and management - Pipe materials specialists Recommended pre-reading: PR-610-163756-R01 Hardness Stength and Ductility (HSD) Testing of Line Pipes Initial Validation Testing Phase I PR-335-173816-MV Validation of insitu Methods for Material Property Determination CLICK THE DOWNLOAD/BUY BUTTON TO ACCESS THE WEBINAR REGISTRATION LINK Not able to attend? Register anyway to automatically receive a link to the webinar recording to view on-demand at your convenience.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pantsyrnyi, V., A. Shikov y A. Nikulin. Process optimization for advanced high conductivity-high strength materials. Office of Scientific and Technical Information (OSTI), septiembre de 1998. http://dx.doi.org/10.2172/334204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rajendran, N. Controlled low strength materials (CLSM), reported by ACI Committee 229. Office of Scientific and Technical Information (OSTI), julio de 1997. http://dx.doi.org/10.2172/505263.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Cuddihy, E. F. Concept for the intrinsic dielectric strength of electrical insulation materials. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/5633930.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía