Siga este enlace para ver otros tipos de publicaciones sobre el tema: Stratospheric ice clouds.

Artículos de revistas sobre el tema "Stratospheric ice clouds"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Stratospheric ice clouds".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zou, Ling, Sabine Griessbach, Lars Hoffmann y Reinhold Spang. "A global view on stratospheric ice clouds: assessment of processes related to their occurrence based on satellite observations". Atmospheric Chemistry and Physics 22, n.º 10 (23 de mayo de 2022): 6677–702. http://dx.doi.org/10.5194/acp-22-6677-2022.

Texto completo
Resumen
Abstract. Ice clouds play an important role in regulating water vapor and influencing the radiative budget in the atmosphere. This study investigates stratospheric ice clouds (SICs) in the latitude range between ±60∘ based on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). As polar stratospheric clouds include other particles, they are not discussed in this work. Tropopause temperature, double tropopauses, clouds in the upper troposphere and lower stratosphere (UTLS), gravity waves, and stratospheric aerosols are analyzed to investigate their relationships with the occurrence of and variability in SICs in the tropics and at midlatitudes. We found that SICs with cloud-top heights of 250 m above the first lapse rate tropopause are mainly detected in the tropics. Monthly time series of SICs from 2007 to 2019 show that high occurrence frequencies of SICs follow the Intertropical Convergence Zone (ITCZ) over time in the tropics and that SICs vary interannually at different latitudes. Results show that SICs associated with double tropopauses, which are related to poleward isentropic transport, are mostly found at midlatitudes. More than 80 % of the SICs around 30∘ N/S are associated with double tropopauses. Correlation coefficients of SICs and all the other abovementioned processes confirm that the occurrence of and variability in SICs are mainly associated with the tropopause temperature in the tropics and at midlatitudes. UTLS clouds, which are retrieved from the Atmospheric Infrared Sounder (AIRS) and used as a proxy for deep convection in the tropics and high-altitude ice cloud sources at midlatitudes, have the highest correlations with SICs in the monsoon regions and the central United States. Gravity waves are mostly related to SICs at midlatitudes, especially over Patagonia and the Drake Passage. However, the second-highest correlation coefficients show that the cold tropopause temperature, the occurrence of double tropopauses, high stratospheric aerosol loading, frequent UTLS clouds, and gravity waves are highly correlated with the SICs locally. The long-term anomaly analyses show that interannual anomalies of SICs are correlated with the tropopause temperature and stratospheric aerosols instead of the UTLS clouds and gravity waves. The overlapping and similar correlation coefficients between SICs and all processes mentioned above indicate strong associations between those processes themselves. Due to their high inherent correlations, it is challenging to disentangle and evaluate their contributions to the occurrence of SICs on a global scale. However, the correlation coefficient analyses between SICs and all abovementioned processes (tropopause temperature, double tropopauses, clouds in the upper troposphere and lower stratosphere (UTLS), gravity waves, and stratospheric aerosols) in this study help us better understand the sources of SICs on a global scale.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

de Reus, M., S. Borrmann, A. Bansemer, A. J. Heymsfield, R. Weigel, C. Schiller, V. Mitev et al. "Evidence for ice particles in the tropical stratosphere from in-situ measurements". Atmospheric Chemistry and Physics 9, n.º 18 (18 de septiembre de 2009): 6775–92. http://dx.doi.org/10.5194/acp-9-6775-2009.

Texto completo
Resumen
Abstract. In-situ ice crystal size distribution measurements are presented within the tropical troposphere and lower stratosphere. The measurements were performed using a combination of a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP), which were installed on the Russian high altitude research aircraft M55 "Geophysica" during the SCOUT-O3 campaign in Darwin, Australia. One of the objectives of the campaign was to characterise the Hector convective system, which appears on an almost daily basis during the pre-monsoon season over the Tiwi Islands, north of Darwin. In total 90 encounters with ice clouds, between 10 and 19 km altitude were selected from the dataset and were analysed. Six of these encounters were observed in the lower stratosphere, up to 1.4 km above the local tropopause. Concurrent lidar measurements on board "Geophysica" indicate that these ice clouds were a result of overshooting convection. Large ice crystals, with a maximum dimension up to 400 μm, were observed in the stratosphere. The stratospheric ice clouds included an ice water content ranging from 7.7×10−5 to 8.5×10−4 g m−3 and were observed at ambient relative humidities (with respect to ice) between 75 and 157%. Three modal lognormal size distributions were fitted to the average size distributions for different potential temperature intervals, showing that the shape of the size distribution of the stratospheric ice clouds are similar to those observed in the upper troposphere. In the tropical troposphere the effective radius of the ice cloud particles decreases from 100 μm at about 10 km altitude, to 3 μm at the tropopause, while the ice water content decreases from 0.04 to 10−5 g m−3. No clear trend in the number concentration was observed with altitude, due to the thin and inhomogeneous characteristics of the observed cirrus clouds. The ice water content calculated from the observed ice crystal size distribution is compared to the ice water content derived from two hygrometer instruments. This independent measurement of the ice water content agrees within the combined uncertainty of the instruments for ice water contents exceeding 3×10−4g m−3. Stratospheric residence times, calculated based on gravitational settling, and evaporation rates show that the ice crystals observed in the stratosphere over the Hector storm system had a high potential of humidifying the stratosphere locally. Utilizing total aerosol number concentration measurements from a four channel condensation particle counter during two separate campaigns, it can be shown that the fraction of ice particles to the number of aerosol particles remaining ranges from 1:300 to 1:30 000 for tropical upper tropospheric ice clouds with ambient temperatures below −75°C.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Achtert, P., M. Karlsson Andersson, F. Khosrawi y J. Gumbel. "Do tropospheric clouds influence Polar Stratospheric cloud occurrence in the Arctic?" Atmospheric Chemistry and Physics Discussions 11, n.º 12 (7 de diciembre de 2011): 32065–84. http://dx.doi.org/10.5194/acpd-11-32065-2011.

Texto completo
Resumen
Abstract. The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occured above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. These findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kirk-Davidoff, D. B. y J. F. Lamarque. "Maintenance of polar stratospheric clouds in a moist stratosphere". Climate of the Past 4, n.º 1 (31 de marzo de 2008): 69–78. http://dx.doi.org/10.5194/cp-4-69-2008.

Texto completo
Resumen
Abstract. Previous work has shown that polar stratospheric clouds (PSCs) could have acted to substantially warm high latitude regions during past warm climates such as the Eocene (55 Ma). Using a simple model of stratospheric water vapor transport and polar stratospheric cloud (PSC) formation, we investigate the dependence of PSC optical depth on tropopause temperature, cloud microphysical parameters, stratospheric overturning, and tropospheric methane. We show that PSC radiative effects can help slow removal of water from the stratosphere via self-heating. However, we also show that the ability of PSCs to have a substantial impact on climate depends strongly on the PSC particle number density and the strength of the overturning circulation. Thus even a large source of stratospheric water vapor (e.g. from methane oxidation) will not result in substantial PSC radiative effects unless PSC ice crystal number density is high compared to most current observations, and stratospheric overturning (which modulates polar stratospheric temperatures) is low. These results are supported by analysis of a series of runs of the NCAR WACCM model with methane concentrations varying up to one thousand times present levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kirk-Davidoff, D. B. y J. F. Lamarque. "Maintenance of polar stratospheric clouds in a moist stratosphere". Climate of the Past Discussions 3, n.º 4 (10 de julio de 2007): 935–60. http://dx.doi.org/10.5194/cpd-3-935-2007.

Texto completo
Resumen
Abstract. Previous work has shown that polar stratospheric clouds (PSCs) could have acted to substantially warm high latitude regions during past warm climates such as the Eocene (55 Ma). Using a simple model of stratospheric water vapor transport and polar stratospheric cloud (PSC) formation, we investigate the dependence of PSC optical depth on tropopause temperature, cloud microphysical parameters, stratospheric overturning, and tropospheric methane. We show that PSC radiative effects can help slow removal of water from the stratosphere via self-heating. However, we also show that the ability of PSCs to have a substantial impact on climate depends strongly on the PSC particle number density and the strength of the overturning circulation. Thus even a large source of stratospheric water vapor (e.g. from methane oxidation) will not result in substantial PSC radiative effects unless PSC ice crystal number density is high, and stratospheric overturning (which modulates polar stratospheric temperatures) is low. These results are supported by analysis of a series of runs of the NCAR WACCM model with methane concentrations varying up to one thousand times present levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Khaykin, S. M., I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer et al. "Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water". Atmospheric Chemistry and Physics 13, n.º 22 (27 de noviembre de 2013): 11503–17. http://dx.doi.org/10.5194/acp-13-11503-2013.

Texto completo
Resumen
Abstract. We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20–24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Achtert, P., M. Karlsson Andersson, F. Khosrawi y J. Gumbel. "On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar". Atmospheric Chemistry and Physics 12, n.º 8 (25 de abril de 2012): 3791–98. http://dx.doi.org/10.5194/acp-12-3791-2012.

Texto completo
Resumen
Abstract. The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Xia, Yan, Yongyun Hu y Yi Huang. "Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments". Atmospheric Chemistry and Physics 16, n.º 12 (21 de junio de 2016): 7559–67. http://dx.doi.org/10.5194/acp-16-7559-2016.

Texto completo
Resumen
Abstract. We investigate the climatic impact of stratospheric ozone recovery (SOR), with a focus on the surface temperature change in atmosphere–slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea ice, it causes surface cooling (−0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

de Reus, M., S. Borrmann, A. J. Heymsfield, R. Weigel, C. Schiller, V. Mitev, W. Frey et al. "Evidence for ice particles in the tropical stratosphere from in-situ measurements". Atmospheric Chemistry and Physics Discussions 8, n.º 6 (14 de noviembre de 2008): 19313–55. http://dx.doi.org/10.5194/acpd-8-19313-2008.

Texto completo
Resumen
Abstract. In-situ ice crystal size distribution measurements are presented within the tropical troposphere and lower stratosphere. The measurements were performed using a combination of a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) which were installed on the Russian high altitude research aircraft M55 "Geophysica" during the SCOUT-O3 campaign in Darwin, Australia. The objective of the campaign was to characterise the outflow of the Hector convective system, which appears on an almost daily basis during the pre-monsoon season over the Tiwi Islands, north of Darwin. In total 90 encounters with ice clouds, between 10 and 19 km altitude were selected from the dataset and were analysed. Six of these encounters were observed in the lower stratosphere, up to 1.4 km above the local tropopause, and were a result of overshooting convection. The ice crystals observed in the stratosphere comprise sizes up to 400 μm maximum dimension, include an ice water content of 0.1×10−3–1.7×10−3 g m−3 and were observed at ambient relative humidities (with respect to ice) between 75 and 157%. Three modal lognormal size distributions were fitted to the average size distributions for different potential temperature intervals, showing that the shape of the size distribution of the stratospheric ice clouds are similar to those observed in the upper troposphere. In the tropical troposphere the effective radius of the ice cloud particles decreases from 100 μm at about 10 km altitude, to 3 μm at the tropopause, while the ice water content decreases from 0.04 to 10−5 g m−3. No clear trend in the number concentration was observed with altitude, due to the thin and inhomogeneous characteristics of the observed cirrus clouds. The ice water content calculated from the observed ice crystal size distribution is compared to the ice water content derived from two hygrometer instruments. This independent measurement of the ice water content agrees within the combined uncertainty of the instruments for ice water contents exceeding 2×10−4 g m−3. Stratospheric residence times, calculated based on gravitational settling only, show that the ice crystals observed in the stratosphere over the Hector storm system have a high potential for humidifying the stratosphere. Utilizing total aerosol number concentration measurements from a four channel condensation particle counter, it can be shown that the fraction of activated ice particles with respect to the number of available aerosol particles ranges from 1:300 to 1:30 000 for tropical upper tropospheric ice clouds with ambient temperatures below −75°C.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Thölix, L., L. Backman, R. Kivi y A. Karpechko. "Variability of water vapour in the Arctic stratosphere". Atmospheric Chemistry and Physics Discussions 15, n.º 16 (17 de agosto de 2015): 22013–45. http://dx.doi.org/10.5194/acpd-15-22013-2015.

Texto completo
Resumen
Abstract. This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990–2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006–2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fortin, T. J., K. Drdla, L. T. Iraci y M. A. Tolbert. "Ice condensation on sulfuric acid tetrahydrate: implications for polar stratospheric ice clouds". Atmospheric Chemistry and Physics Discussions 3, n.º 1 (17 de febrero de 2003): 867–94. http://dx.doi.org/10.5194/acpd-3-867-2003.

Texto completo
Resumen
Abstract. The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT). Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of Sice= 1.3 to 1.02 over the temperature range 169.8–194.5 K. This corresponds to a necessary supercooling of 0.1–1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g. 10−4 cm−3) result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Fortin, T. J., K. Drdla, L. T. Iraci y M. A. Tolbert. "Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds". Atmospheric Chemistry and Physics 3, n.º 4 (9 de julio de 2003): 987–97. http://dx.doi.org/10.5194/acp-3-987-2003.

Texto completo
Resumen
Abstract. The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT). Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of S*ice = 1.3 to 1.02 over the temperature range 169.8-194.5 K. This corresponds to a necessary supercooling of 0.1-1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g., 10-3 cm-3) result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Engel, I., B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J. U. Grooß, M. C. Pitts y T. Peter. "Arctic stratospheric dehydration – Part 2: Microphysical modeling". Atmospheric Chemistry and Physics Discussions 13, n.º 10 (18 de octubre de 2013): 27163–200. http://dx.doi.org/10.5194/acpd-13-27163-2013.

Texto completo
Resumen
Abstract. Large areas of synoptic-scale ice PSCs (Polar Stratospheric Clouds) distinguished the Arctic winter 2009/2010 from other years and revealed unprecedented evidence of water redistribution in the stratosphere. A unique snapshot of water vapor repartitioning into ice particles was observed under extremely cold Arctic conditions with temperatures around 183 K. Balloon-borne, aircraft and satellite-based measurements suggest that synoptic-scale ice PSCs and concurrent reductions and enhancements in water vapor are tightly linked with the observed de- and rehydration signatures, respectively. In a companion paper (Part 1), water vapor and aerosol backscatter measurements from the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) and LAPBIAT-II (Lapland Atmosphere-Biosphere Facility) field campaigns have been analyzed in detail. This paper uses a column version of the Zurich Optical and Microphysical box Model (ZOMM) including newly developed NAT (Nitric Acid Trihydrate) and ice nucleation parameterizations. Particle sedimentation is calculated in order to simulate the vertical redistribution of chemical species such as water and nitric acid. Accounting for small-scale temperature fluctuations along the trajectory is essential to reach agreement between simulated optical cloud properties and observations. Whereas modeling only homogeneous nucleation causes the formation of ice clouds with particle radii too small to explain the measured vertical redistribution of water, we show that the use of recently developed heterogeneous ice nucleation parameterizations allows the model to quantitatively reproduce the observed signatures of de- and rehydration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Spang, R., K. Arndt, A. Dudhia, M. Höpfner, L. Hoffmann, J. Hurley, R. G. Grainger et al. "Fast cloud parameter retrievals of MIPAS/Envisat". Atmospheric Chemistry and Physics Discussions 11, n.º 12 (14 de diciembre de 2011): 33013–94. http://dx.doi.org/10.5194/acpd-11-33013-2011.

Texto completo
Resumen
Abstract. The infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community. Here we describe a fast prototype processor for cloud parameter retrieval from MIPAS (MIPclouds). Retrieval of parameters such as cloud top height, temperature, and extinction are implemented, as well as of microphysical parameters, e.g. effective radius and the integrated quantities over the limb path (surface area density and volume density). MIPclouds classifies clouds as either liquid or ice cloud in the upper troposphere and polar stratospheric clouds types in the stratosphere based on statistical combinations of colour ratios and brightness temperature differences. Comparison of limb measurements of clouds with model results or cloud parameters from nadir looking instruments is often difficult due to different observation geometries. We therefore introduce a new concept, the limb-integrated surface area density path (ADP). By means of validation and radiative transfer calculations of realistic 2-D cloud fields as input for a blind test retrieval (BTR), we demonstrate that ADP is an extremely valuable parameter for future comparison with 3-D model data of ice water content, when applying limb integration (ray tracing) through the model fields. In addition, ADP is used for a more objective definition of a cloud detection threshold. Based on BTR, a detection threshold for ADP of 107 μm2 cm−2 and an ice water content of 10−5 g m−3 is estimated, depending on the horizontal and vertical extent of the cloud. Intensive validation of the cloud detection methods shows that the limb-sounding MIPAS instrument has a sensitivity in detecting stratospheric and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa) on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II) limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields). The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Spang, R., K. Arndt, A. Dudhia, M. Höpfner, L. Hoffmann, J. Hurley, R. G. Grainger et al. "Fast cloud parameter retrievals of MIPAS/Envisat". Atmospheric Chemistry and Physics 12, n.º 15 (7 de agosto de 2012): 7135–64. http://dx.doi.org/10.5194/acp-12-7135-2012.

Texto completo
Resumen
Abstract. The infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community. Here we describe a fast prototype processor for cloud parameter retrieval from MIPAS (MIPclouds). Retrieval of parameters such as cloud top height, temperature, and extinction are implemented, as well as retrieval of microphysical parameters, e.g. effective radius and the integrated quantities over the limb path (surface area density and volume density). MIPclouds classifies clouds as either liquid or ice cloud in the upper troposphere and polar stratospheric clouds types in the stratosphere based on statistical combinations of colour ratios and brightness temperature differences. Comparison of limb measurements of clouds with model results or cloud parameters from nadir looking instruments is often difficult due to different observation geometries. We therefore introduce a new concept, the limb-integrated surface area density path (ADP). By means of validation and radiative transfer calculations of realistic 2-D cloud fields as input for a blind test retrieval (BTR), we demonstrate that ADP is an extremely valuable parameter for future comparison with model data of ice water content, when applying limb integration (ray tracing) through the model fields. In addition, ADP is used for a more objective definition of detection thresholds of the applied detection methods. Based on BTR, a detection threshold of ADP = 107 μm2 cm−2 and an ice water content of 10−5 g m−3 is estimated, depending on the horizontal and vertical extent of the cloud. Intensive validation of the cloud detection methods shows that the limb-sounding MIPAS instrument has a sensitivity in detecting stratospheric and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa) on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II) limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields). The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Toon, Owen B., R. P. Turco, J. Jordan, J. Goodman y G. Ferry. "Physical processes in polar stratospheric ice clouds". Journal of Geophysical Research 94, n.º D9 (1989): 11359. http://dx.doi.org/10.1029/jd094id09p11359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Gettelman, A. y D. E. Kinnison. "The global impact of supersaturation in a coupled chemistry-climate model". Atmospheric Chemistry and Physics Discussions 6, n.º 6 (1 de diciembre de 2006): 12433–68. http://dx.doi.org/10.5194/acpd-6-12433-2006.

Texto completo
Resumen
Abstract. Ice supersaturation is important for understanding condensation in the upper troposphere. Most general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. The study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. Results indicate that high clouds decrease and water vapor in the stratosphere increases nearly linearly with supersaturation (20% supersaturation increases water vapor by nearly 20%). The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm−2) with a small component likely from radiative effect (greenhouse trapping) of the extra water vapor (~+0.2 Wm−2), consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. We do not see evidence of a strong impact of water vapor on tropical tropopause temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Pitts, M. C., L. R. Poole, A. Dörnbrack y L. W. Thomason. "The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective". Atmospheric Chemistry and Physics 11, n.º 5 (10 de marzo de 2011): 2161–77. http://dx.doi.org/10.5194/acp-11-2161-2011.

Texto completo
Resumen
Abstract. Spaceborne lidar measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are used to provide a vortex-wide perspective of the 2009–2010 Arctic PSC (polar stratospheric cloud) season to complement more focused measurements from the European Union RECONCILE (reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) field campaign. The 2009–2010 Arctic winter was unusually cold at stratospheric levels from mid-December 2009 until the end of January 2010, and was one of only a few winters from the past fifty-two years with synoptic-scale regions of temperatures below the frost point. More PSCs were observed by CALIPSO during the 2009–2010 Arctic winter than in the previous three Arctic seasons combined. In particular, there were significantly more observations of high number density NAT (nitric acid trihydrate) mixtures (referred to as Mix 2-enh) and ice PSCs. We found that the 2009–2010 season could roughly be divided into four periods with distinctly different PSC optical characteristics. The early season (15–30 December 2009) was characterized by patchy, tenuous PSCs, primarily low number density liquid/NAT mixtures. No ice clouds were observed by CALIPSO during this early phase, suggesting that these early season NAT clouds were formed through a non-ice nucleation mechanism. The second phase of the season (31 December 2009–14 January 2010) was characterized by frequent mountain wave ice clouds that nucleated widespread NAT particles throughout the vortex, including Mix 2-enh. The third phase of the season (15–21 January 2010) was characterized by synoptic-scale temperatures below the frost point which led to a rare outbreak of widespread ice clouds. The fourth phase of the season (22–28 January) was characterized by a major stratospheric warming that distorted the vortex, displacing the cold pool from the vortex center. This final phase was dominated by STS (supercooled ternary solution) PSCs, although NAT particles may have been present in low number densities, but were masked by the more abundant STS droplets at colder temperatures. We also found distinct variations in the relative proportion of PSCs in each composition class with altitude over the course of the 2009–2010 Arctic season. Lower number density liquid/NAT mixtures were most frequently observed in the lower altitude regions of the clouds (below ~18–20 km), which is consistent with CALIPSO observations in the Antarctic. Higher number density liquid/NAT mixtures, especially Mix 2-enh, were most frequently observed at altitudes above 18–20 km, primarily downstream of wave ice clouds. This pattern is consistent with the conceptual model whereby low number density, large NAT particles are precipitated from higher number density NAT clouds (i.e. mother clouds) that are nucleated downstream of mountain wave ice clouds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ugelow, Melissa S. y Carrie M. Anderson. "Optical Properties of Cyanoacetylene Ices in the Far- to Near-infrared with Direct Relevance to Titan's Stratospheric Ice Clouds". Planetary Science Journal 3, n.º 4 (1 de abril de 2022): 77. http://dx.doi.org/10.3847/psj/ac596f.

Texto completo
Resumen
Abstract Cyanoacetylene (HC3N) ice has been observed in Titan’s stratosphere by both Voyager 1's InfraRed Interferometer Spectrometer (IRIS) and Cassini's Composite InfraRed Spectrometer (CIRS), and it is likely prevalent in other objects in our solar system and exoplanetary systems as well. While previous experimental studies targeting Titan’s stratospheric clouds have determined the optical properties of HC3N ice in the infrared (IR) spectral range, those thin ice films were formed by annealing processes, which contradicts the formation mechanism of Titan’s stratospheric ice clouds. As a result, optical constants of HC3N ices, experimentally created in a similar manner to the way they are formed in Titan’s stratosphere, are crucial. Here we experimentally measured absorbance spectra of HC3N thin ice films from the near- to far-IR spectral region (50–8000 cm−1; 200–1.25 μm) formed via direct vapor deposition at 30, 50, 70, 90, 110, and 113 K. The corresponding optical constants at all temperatures were also computed, resulting in the largest continuous IR spectral range available for HC3N ice. New tentative peak assignments for spectral features in the near-IR are also reported, thereby further enhancing the inventory of optical constants available for HC3N ice spanning the near- to far-IR spectral range.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Anderson, C. M., D. Nna-Mvondo, R. E. Samuelson, J. L. McLain y J. P. Dworkin. "The SPECTRAL Ice Chamber: Application to Titan’s Stratospheric Ice Clouds". Astrophysical Journal 865, n.º 1 (21 de septiembre de 2018): 62. http://dx.doi.org/10.3847/1538-4357/aadbab.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Engel, I., B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J. U. Grooß, M. C. Pitts y T. Peter. "Arctic stratospheric dehydration – Part 2: Microphysical modeling". Atmospheric Chemistry and Physics 14, n.º 7 (2 de abril de 2014): 3231–46. http://dx.doi.org/10.5194/acp-14-3231-2014.

Texto completo
Resumen
Abstract. Large areas of synoptic-scale ice PSCs (polar stratospheric clouds) distinguished the Arctic winter 2009/2010 from other years and revealed unprecedented evidence of water redistribution in the stratosphere. A unique snapshot of water vapor repartitioning into ice particles was obtained under extremely cold Arctic conditions with temperatures around 183 K. Balloon-borne, aircraft and satellite-based measurements suggest that synoptic-scale ice PSCs and concurrent reductions and enhancements in water vapor are tightly linked with the observed de- and rehydration signatures, respectively. In a companion paper (Part 1), water vapor and aerosol backscatter measurements from the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) and LAPBIAT-II (Lapland Atmosphere–Biosphere Facility) field campaigns have been analyzed in detail. This paper uses a column version of the Zurich Optical and Microphysical box Model (ZOMM) including newly developed NAT (nitric acid trihydrate) and ice nucleation parameterizations. Particle sedimentation is calculated in order to simulate the vertical redistribution of chemical species such as water and nitric acid. Despite limitations given by wind shear and uncertainties in the initial water vapor profile, the column modeling unequivocally shows that (1) accounting for small-scale temperature fluctuations along the trajectories is essential in order to reach agreement between simulated optical cloud properties and observations, and (2) the use of recently developed heterogeneous ice nucleation parameterizations allows the reproduction of the observed signatures of de- and rehydration. Conversely, the vertical redistribution of water measured cannot be explained in terms of homogeneous nucleation of ice clouds, whose particle radii remain too small to cause significant dehydration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Dörnbrack, Andreas, Sonja Gisinger, Michael C. Pitts, Lamont R. Poole y Marion Maturilli. "Multilevel Cloud Structures over Svalbard". Monthly Weather Review 145, n.º 4 (3 de marzo de 2017): 1149–59. http://dx.doi.org/10.1175/mwr-d-16-0214.1.

Texto completo
Resumen
Abstract The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Gettelman, A. y D. E. Kinnison. "The global impact of supersaturation in a coupled chemistry-climate model". Atmospheric Chemistry and Physics 7, n.º 6 (27 de marzo de 2007): 1629–43. http://dx.doi.org/10.5194/acp-7-1629-2007.

Texto completo
Resumen
Abstract. Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. High clouds decrease and water vapor in the stratosphere increases at a similar rate to the prescribed supersaturation (20% supersaturation increases water vapor by nearly 20%). The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm−2) with a small component likely from the radiative effect (greenhouse trapping) of the extra water vapor (~+0.2 Wm−2), consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. There is no evidence of a strong impact of water vapor on tropical tropopause temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Grosvenor, D. P., T. W. Choularton, H. Coe y G. Held. "A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations". Atmospheric Chemistry and Physics 7, n.º 18 (28 de septiembre de 2007): 4977–5002. http://dx.doi.org/10.5194/acp-7-4977-2007.

Texto completo
Resumen
Abstract. Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISCUS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S, 49° W), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is produced by clouds that penetrate the tropopause, since the weakest case only just did so. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar (S-band type at 2.8 Ghz) to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the cold point and WMO (World Meteorological Organization) tropopause in this region lies at ~15.9 km, this is likely to represent direct stratospheric moistening. Much more moistening is predicted for the 15–16 km height range with increases of 0.85–2.8 ppmv predicted. However, it would be required that this air is lofted through the tropopause via the Brewer Dobson circulation in order for it to have a stratospheric effect. Whether this is likely is uncertain and, in addition, the dehydration of air as it passes through the cold trap and the number of times that trajectories sample convective regions needs to be taken into account to gauge the overall stratospheric effect. Nevertheless, the results suggest a potentially significant role for convection in determining the stratospheric water content. Sensitivity tests exploring the impact of increased aerosol numbers in the boundary layer suggest that a corresponding rise in cloud droplet numbers at cloud base would increase the number concentrations of the ice crystals transported to the TTL, which had the effect of reducing the fall speeds of the ice and causing a ~13% rise in the mean vapour increase in both the 15–16 and 16–17 km height ranges, respectively, when compared to the control case. Increases in the total water were much larger, being 34% and 132% higher for the same height ranges, but it is unclear whether the extra ice will be able to evaporate before precipitating from the region. These results suggest a possible impact of natural and anthropogenic aerosols on how convective clouds affect stratospheric moisture levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Pitts, M. C., L. R. Poole, A. Dörnbrack y L. W. Thomason. "The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective". Atmospheric Chemistry and Physics Discussions 10, n.º 10 (18 de octubre de 2010): 24205–43. http://dx.doi.org/10.5194/acpd-10-24205-2010.

Texto completo
Resumen
Abstract. Spaceborne lidar measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are used to provide a vortex-wide perspective of the 2009–2010 Arctic polar stratospheric cloud (PSC) season to complement more focused measurements from the European Union RECONCILE (reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) field campaign. The 2009–2010 Arctic winter was unusually cold at stratospheric levels, especially from mid-December 2009 until the end of January 2010, and was one of only a few winters from the past 52 years with synoptic-scale regions of temperatures below the frost point. More PSCs were observed by CALIPSO during the 2009–2010 Arctic winter than in the previous three Arctic seasons combined. In particular, there were significantly more observations of high number density nitric acid trihydrate (NAT) mixtures (referred to as Mix 2-enh) and ice PSCs. We found that the 2009–2010 season could roughly be divided into four periods with distinctly different PSC optical characteristics. The early season (15–30 December 2009) was characterized by patchy, tenuous PSCs, primarily low number density liquid/NAT mixtures. The second phase of the season (31 December 2009–14 January 2010) was characterized by frequent mountain wave ice clouds that nucleated widespread NAT particles throughout the vortex, including Mix 2-enh. The third phase of the season (15–21 January 2010) was characterized by synoptic-scale temperatures below the frost point which led to a rare outbreak of widespread ice clouds. The fourth phase of the season (22–28 January) was characterized by a major stratospheric warming that distorted the vortex, displacing the cold pool from the vortex center. This final phase was dominated by supercooled ternary solution (STS) PSCs, although NAT particles may have been present in low number densities, but were masked by the more abundant STS droplets at colder temperatures. We also found distinct variations in the relative proportion of PSCs in each composition class with altitude over the course of the 2009–2010 Arctic season. Lower number density liquid/NAT mixtures were most frequently observed in the lower altitude regions of the clouds (below ∼18–20 km), which is consistent with CALIPSO observations in the Antarctic. Higher number density liquid/NAT mixtures, especially Mix 2-enh, were most frequently observed at altitudes above 18–20 km, primarily downstream of wave ice clouds. This pattern is consistent with the conceptual model whereby low number density, large NAT particles are precipitated from higher number density NAT clouds (i.e. mother clouds) that are nucleated downstream of mountain wave ice clouds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Khaykin, S. M., I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer et al. "Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water". Atmospheric Chemistry and Physics Discussions 13, n.º 5 (30 de mayo de 2013): 14249–95. http://dx.doi.org/10.5194/acpd-13-14249-2013.

Texto completo
Resumen
Abstract. We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in-situ instrumentation on balloon-sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice PSCs (polar stratospheric clouds) detected remotely by the lidar aboard the CALIPSO satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman-α hygrometers (CFH, FISH, FLASH) and backscatter sondes (COBALD) conducted in January 2010 within the LAPBIAT and RECONCILE campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20–24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km-thick layer below. Comparison with space-borne Aura MLS water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Nna-Mvondo, Delphine y Carrie M. Anderson. "Infrared Spectra, Optical Constants, and Temperature Dependences of Amorphous and Crystalline Benzene Ices Relevant to Titan". Astrophysical Journal 925, n.º 2 (1 de febrero de 2022): 123. http://dx.doi.org/10.3847/1538-4357/ac350c.

Texto completo
Resumen
Abstract Benzene ice contributes to an emission feature detected by the Cassini Composite InfraRed Spectrometer (CIRS) near 682 cm−1 in Titan’s late southern fall polar stratosphere. It is also one of the dominant components of the CIRS-observed High-Altitude South Polar ice cloud observed in Titan’s mid stratosphere during late southern fall. Titan’s stratosphere exhibits significant seasonal changes with temperatures that spatially vary with seasons. A quantitative analysis of the chemical composition of infrared emission spectra of Titan’s stratospheric ice clouds relies on consistent and detailed laboratory transmittance spectra obtained at numerous temperatures. However, there is a substantial lack of experimental data on the spectroscopic and optical properties of benzene ice and its temperature dependence, especially at Titan-relevant stratospheric conditions. We have therefore analyzed in laboratory the spectral characteristics and evolution of benzene ice’s vibrational modes at deposition temperatures ranging from 15 to 130 K, from the far- to mid-IR spectral region (50–8000 cm−1). We have determined the amorphous-to-crystalline phase transition of benzene ice and identified that a complete crystallization is achieved for deposition temperatures between 120 and 130 K. We have also measured the real and imaginary parts of the ice complex refractive index of benzene ice from 15 to 130 K. Our experimental results significantly extend the current state of knowledge on the deposition temperature dependence of benzene ice over a broad infrared spectral range, and provide useful new data for the analysis and interpretation of Titan-observed spectra.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Voigt, Christiane, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann et al. "Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation". Atmospheric Chemistry and Physics 18, n.º 21 (30 de octubre de 2018): 15623–41. http://dx.doi.org/10.5194/acp-18-15623-2018.

Texto completo
Resumen
Abstract. Low planetary wave activity led to a stable vortex with exceptionally cold temperatures in the 2015–2016 Arctic winter. Extended areas with temperatures below the ice frost point temperature Tice persisted over weeks in the Arctic stratosphere as derived from the 36-year temperature climatology of the ERA-Interim reanalysis data set of the European Centre for Medium-Range Weather Forecasts (ECMWF). These extreme conditions promoted the formation of widespread polar stratospheric ice clouds (ice PSCs). The space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite continuously measured ice PSCs for about a month with maximum extensions of up to 2×106 km2 in the stratosphere. On 22 January 2016, the WALES (Water Vapor Lidar Experiment in Space – airborne demonstrator) lidar on board the High Altitude and Long Range Research Aircraft HALO detected an ice PSC with a horizontal length of more than 1400 km. The ice PSC extended between 18 and 24 km altitude and was surrounded by nitric acid trihydrate (NAT) particles, supercooled ternary solution (STS) droplets and particle mixtures. The ice PSC occurrence histogram in the backscatter ratio to particle depolarization ratio optical space exhibits two ice modes with high or low particle depolarization ratios. Domain-filling 8-day back-trajectories starting in the high particle depolarization (high-depol) ice mode are continuously below the NAT equilibrium temperature TNAT and decrease below Tice∼10 h prior to the observation. Their matches with CALIPSO PSC curtain plots demonstrate the presence of NAT PSCs prior to high-depol ice, suggesting that the ice had nucleated on NAT. Vice versa, STS or no PSCs were detected by CALIPSO prior to the ice mode with low particle depolarization ratio. In addition to ice nucleation in STS potentially having meteoric inclusions, we find evidence for ice nucleation on NAT in the Arctic winter 2015–2016. The observation of widespread Arctic ice PSCs with high or low particle depolarization ratios advances our understanding of ice nucleation in polar latitudes. It further provides a new observational database for the parameterization of ice nucleation schemes in atmospheric models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

James, Alexander D., James S. A. Brooke, Thomas P. Mangan, Thomas F. Whale, John M. C. Plane y Benjamin J. Murray. "Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material". Atmospheric Chemistry and Physics 18, n.º 7 (4 de abril de 2018): 4519–31. http://dx.doi.org/10.5194/acp-18-4519-2018.

Texto completo
Resumen
Abstract. Heterogeneous nucleation of crystalline nitric acid hydrates in polar stratospheric clouds (PSCs) enhances ozone depletion. However, the identity and mode of action of the particles responsible for nucleation remains unknown. It has been suggested that meteoric material may trigger nucleation of nitric acid trihydrate (NAT, or other nitric acid phases), but this has never been quantitatively demonstrated in the laboratory. Meteoric material is present in two forms in the stratosphere: smoke that results from the ablation and re-condensation of vapours, and fragments that result from the break-up of meteoroids entering the atmosphere. Here we show that analogues of both materials have a capacity to nucleate nitric acid hydrates. In combination with estimates from a global model of the amount of meteoric smoke and fragments in the polar stratosphere we show that meteoric material probably accounts for NAT observations in early season polar stratospheric clouds in the absence of water ice.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Liu, Xiaohong, Joyce E. Penner, Steven J. Ghan y Minghuai Wang. "Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3)". Journal of Climate 20, n.º 18 (15 de septiembre de 2007): 4526–47. http://dx.doi.org/10.1175/jcli4264.1.

Texto completo
Resumen
Abstract A prognostic equation for ice crystal number concentration together with an ice nucleation scheme are implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3 (CAM3) with the aim of studying the indirect effect of aerosols on cold clouds. The effective radius of ice crystals, which is used in the radiation and gravitational settlement calculations, is now calculated from model-predicted mass and number of ice crystals rather than diagnosed as a function of temperature. A water vapor deposition scheme is added to replace the condensation and evaporation (C–E) in the standard CAM3 for ice clouds. The repartitioning of total water into liquid and ice in mixed-phase clouds as a function of temperature is removed, and ice supersaturation is allowed. The predicted ice water content in the modified CAM3 is in better agreement with the Aura Microwave Limb Sounder (MLS) data than that in the standard CAM3. The cirrus cloud fraction near the tropical tropopause, which is underestimated in the standard CAM3 as revealed through comparison with the Stratospheric Aerosol and Gas Experiment II (SAGE II) data, is increased by 20%–30%, and the cold temperature bias there is reduced by 1–2 K. However, an increase in the cloud fraction in polar regions makes the underestimation (by ∼20 W m−2) of downwelling shortwave radiation in the standard CAM3 even worse. A sensitivity test reducing the threshold relative humidity with respect to ice (RHi) for heterogeneous ice nucleation from 120% to 105% (representing nearly perfect ice nuclei) increases the global cloud cover by 1.4%, temperature near the tropical tropopause by 4–5 K, and water vapor in the stratosphere by 50%–80%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Grosvenor, D. P., T. W. Choularton, H. Coe y G. Held. "A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations". Atmospheric Chemistry and Physics Discussions 7, n.º 3 (30 de mayo de 2007): 7277–346. http://dx.doi.org/10.5194/acpd-7-7277-2007.

Texto completo
Resumen
Abstract. Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISUCS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is predicted, since the weakest case only just penetrated the tropopause. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the tropopause in this region is thought to lie at ~15.9 km, this is likely to represent direct stratospheric moistening. Much more moistening is predicted for the 15–16 km height range with increases of 0.85–2.8 ppmv predicted. However, it would be required that this air is lofted through the tropopause via the Brewer Dobson circulation in order for it to have a stratospheric effect. Whether this is likely is uncertain and, in addition, the dehydration of air as it passes through the cold trap and the number of times that trajectories sample convective regions needs to be taken into account to gauge the overall stratospheric effect. Nevertheless, the results suggest a potentially significant role for convection in determining the stratospheric water content. Sensitivity tests exploring the impact of increased aerosol numbers in the boundary layer suggest that a corresponding rise in cloud droplet numbers at cloud base would increase the number concentrations of the ice crystals transported to the TTL, which had the effect of reducing the fall speeds of the ice and causing a ~13% rise in the mean vapour increase in both the 15–16 and 16–17 km height ranges, respectively, when compared to the control case. Increases in the total water were much larger, being 34% and 132% higher for the same height ranges, but it is unclear whether the extra ice will be able to evaporate before precipitating from the region. These results suggest a possible impact of natural and anthropogenic aerosols on how convective clouds affect stratospheric moisture levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Engel, I., B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J. U. Grooß, A. Dörnbrack y T. Peter. "Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales". Atmospheric Chemistry and Physics Discussions 13, n.º 4 (3 de abril de 2013): 8831–72. http://dx.doi.org/10.5194/acpd-13-8831-2013.

Texto completo
Resumen
Abstract. This paper provides unprecedented evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (Polar Stratospheric Clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~ 1000 km dimension). CALIPSO observations also showed widespread PSCs containing nitric acid trihydrate (NAT) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the entire Arctic winter 2009/2010.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Engel, I., B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J. U. Grooß, A. Dörnbrack y T. Peter. "Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales". Atmospheric Chemistry and Physics 13, n.º 21 (6 de noviembre de 2013): 10769–85. http://dx.doi.org/10.5194/acp-13-10769-2013.

Texto completo
Resumen
Abstract. This paper provides compelling evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (polar stratospheric clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~1000 km dimension). CALIPSO observations also showed widespread PSCs containing NAT (nitric acid trihydrate) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the entire Arctic winter 2009/2010.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

GEORGE, STEVEN M. y FRANK E. LIVINGSTON. "DYNAMIC ICE SURFACE IN THE POLAR STRATOSPHERE". Surface Review and Letters 04, n.º 04 (agosto de 1997): 771–80. http://dx.doi.org/10.1142/s0218625x97000754.

Texto completo
Resumen
Heterogeneous reactions on polar stratospheric clouds (PSCs), such as ClONO2+HCl — Cl2+HNO3 , are important for an understanding of the production of active chlorine species (HOCl, Cl2 ) and Antarctic ozone depletion. H2O -ice forms the Type II PSCs and the nature of H2O -ice surfaces under stratospheric conditions may affect the heterogeneous chemistry. This review focuses on recent measurements of H2O adsorption kinetics on ice, H2O desorption kinetics from ice, H2O surface diffusion on ice and H2O diffusion into ice. These measurements reveal that the ice surface is extremely dynamic under polar stratospheric conditions. For example, the residence time for an H2O molecule on an ice surface at 188 K is only ~20 milliseconds before desorption and only ~0.4 milliseconds before diffusion into the ice bulk. The dynamic nature of the ice surface may significantly affect the adsorption, solvation, diffusion and reaction of the chlorine reservoir molecules ( ClONO2 , HCl). The dynamic ice surface may also serve as a model for the surfaces of other molecular solids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zou, Ling, Lars Hoffmann, Sabine Griessbach, Reinhold Spang y Lunche Wang. "Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America". Atmospheric Chemistry and Physics 21, n.º 13 (12 de julio de 2021): 10457–75. http://dx.doi.org/10.5194/acp-21-10457-2021.

Texto completo
Resumen
Abstract. Ice clouds in the lowermost stratosphere affect stratospheric water vapour and the Earth's radiation budget. The knowledge of its occurrence and driving forces is limited. To assess the distribution and possible formation mechanisms of stratospheric ice clouds (SICs) over North America, we analysed SIC occurrence frequencies observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. Results show that at nighttime, SICs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with a maximum occurrence frequency of 6.2 %. During the months from November to February (NDJF), the highest SICs occurrence frequencies are 5.5 % over the north-eastern Pacific and western Canada and 4.4 % over the western North Atlantic. Occurrence frequencies of deep convection from AIRS, which includes storm systems, fronts, mesoscale convective systems, and mesoscale convective complexes at midlatitude and high latitude, show similar hotspots like the SICs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4 %) and over the north-eastern Pacific, western Canada, and the western North Atlantic in NDJF (∼ 2.5 %). Both, seasonal patterns and daily time series of SICs and deep convection show a high degree of spatial and temporal relation. Further analysis indicates that the maximum fraction of SICs related to deep convection is 74 % over the Great Plains in MJJA and about 50 % over the western North Atlantic, the north-eastern Pacific, and western Canada in NDJF. We conclude that, locally and regionally, deep convection is the leading factor related to the occurrence of SICs over North America. In this study, we also analysed the impact of gravity waves as another important factor related to the occurrence of SICs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In the cases where SICs are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate with SICs with as much as 30 % of the cases over the Great Plains in MJJA, about 50 % over the north-eastern Pacific and western Canada, and up to 90 % over eastern Canada and the north-west Atlantic in NDJF. Our results provide a better understanding of the physical processes and climate variability related to SICs and will be of interest for modellers as SIC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Thölix, Laura, Leif Backman, Rigel Kivi y Alexey Yu Karpechko. "Variability of water vapour in the Arctic stratosphere". Atmospheric Chemistry and Physics 16, n.º 7 (7 de abril de 2016): 4307–21. http://dx.doi.org/10.5194/acp-16-4307-2016.

Texto completo
Resumen
Abstract. This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990–2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere–Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Voelger, Peter y Peter Dalin. "Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden". Atmospheric Chemistry and Physics 23, n.º 9 (17 de mayo de 2023): 5551–65. http://dx.doi.org/10.5194/acp-23-5551-2023.

Texto completo
Resumen
Abstract. In the present paper, we analyse 11 years of lidar measurements to derive general characteristics of polar stratospheric clouds (PSCs) and to examine how mountain lee waves influence PSC properties. Measurements of PSCs were made with a backscatter lidar located in Kiruna, northern Sweden, in the lee of the Scandinavian mountain range. The statistical analysis demonstrates that nearly half of all observed PSCs consisted of nitric acid trihydrate (NAT) particles, while ice clouds accounted for only a small fraction, and the remainder consisted of supercooled ternary solution (STS) and mixtures of different compositions. Most PSCs were observed around 22 km altitude. Mountain lee waves provide a distinct influence on PSC chemical composition and cloud height distribution. Ice PSCs were about 5 times as frequent, and NAT clouds were about half as frequent under wave conditions. PSCs were on average at 2 km higher altitudes when under the influence of mountain lee waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Hardiman, Steven C., Ian A. Boutle, Andrew C. Bushell, Neal Butchart, Mike J. P. Cullen, Paul R. Field, Kalli Furtado et al. "Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models". Journal of Climate 28, n.º 16 (10 de agosto de 2015): 6516–35. http://dx.doi.org/10.1175/jcli-d-15-0075.1.

Texto completo
Resumen
Abstract A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Feng, Qiujuan, Shengjie Niu, Tuanjie Hou, Zhiguo Yue y Dongdong Shen. "Aircraft Observations of Characteristics and Growth of Ice Particles of Two Different Snowfall Clouds in Shanxi Province, China". Atmosphere 12, n.º 4 (9 de abril de 2021): 477. http://dx.doi.org/10.3390/atmos12040477.

Texto completo
Resumen
The ice crystal habits, distributions and growth processes in two snowfall cloud cases on 29 November 2009 and 3 March 2012 in northern China were compared and analyzed with aircraft data. The results showed that ice crystal habits were affected by the height of ice clouds. Ice crystals in clouds with cloud top temperatures of −12.6 °C were predominantly needle, plate, dendrite and irregular. When the cloud top temperature was lower than −19.5 °C, plates, dendrites and irregular ice crystals were observed in addition to needles, capped-column crystals were observed in the lower and middle layers of clouds, and column crystals were observed in the upper layer of clouds. The liquid water content of the two snowfall processes was lower than 0.1 g·m−3. Ice particles grew mainly via deposition, riming and aggregation processes. On 29 November, the liquid water content of the stratospheric mixed snowfall cloud was distributed in the lower part of the cloud. The maximum values of particle concentration and ice water content detected by a cloud imaging probe were 187 L−1 and 1.05 g·m−3, which were at −8.7 °C, and the ice water content was higher. On 3 March, the liquid water content of snowfall in stratiform clouds was located in the middle layer, and the maximum ice water was low, which was only 0.052 g m−3. The ice water value on 29 November was higher, which was mainly due to the convective zone embedded in the cumulus mixed cloud containing a large number of riming and aggregated snow crystals. Using an exponential function to fit the crystal spectrum of the two snowfall processes, N0 and λ were 109−1011 m−4 and 108−1010 m−4 and 103−104 m−1 and 104 m−1, respectively. Compared with 3 March, N0 on 29 November was larger and the variation range of λ was one more order of magnitude. N0 and λ conformed to a power function distribution. By analyzing the scatter plot of the correlation coefficient and slope, it was found that the exponential function can accurately express the crystal spectrum of snow clouds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Tritscher, Ines, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller y Martin Riese. "Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere". Atmospheric Chemistry and Physics 19, n.º 1 (14 de enero de 2019): 543–63. http://dx.doi.org/10.5194/acp-19-543-2019.

Texto completo
Resumen
Abstract. Polar stratospheric clouds (PSCs) and cold stratospheric aerosols drive heterogeneous chemistry and play a major role in polar ozone depletion. The Chemical Lagrangian Model of the Stratosphere (CLaMS) simulates the nucleation, growth, sedimentation, and evaporation of PSC particles along individual trajectories. Particles consisting of nitric acid trihydrate (NAT), which contain a substantial fraction of the stratospheric nitric acid (HNO3), were the focus of previous modeling work and are known for their potential to denitrify the polar stratosphere. Here, we carried this idea forward and introduced the formation of ice PSCs and related dehydration into the sedimentation module of CLaMS. Both processes change the simulated chemical composition of the lower stratosphere. Due to the Lagrangian transport scheme, NAT and ice particles move freely in three-dimensional space. Heterogeneous NAT and ice nucleation on foreign nuclei as well as homogeneous ice nucleation and NAT nucleation on preexisting ice particles are now implemented into CLaMS and cover major PSC formation pathways. We show results from the Arctic winter 2009/2010 and from the Antarctic winter 2011 to demonstrate the performance of the model over two entire PSC seasons. For both hemispheres, we present CLaMS results in comparison to measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the Microwave Limb Sounder (MLS). Observations and simulations are presented on season-long and vortex-wide scales as well as for single PSC events. The simulations reproduce well both the timing and the extent of PSC occurrence inside the entire vortex. Divided into specific PSC classes, CLaMS results show predominantly good agreement with CALIOP and MIPAS observations, even for specific days and single satellite orbits. CLaMS and CALIOP agree that NAT mixtures are the first type of PSC to be present in both winters. NAT PSC areal coverages over the entire season agree satisfactorily. However, cloud-free areas, next to or surrounded by PSCs in the CALIOP data, are often populated with NAT particles in the CLaMS simulations. Looking at the temporal and vortex-averaged evolution of HNO3, CLaMS shows an uptake of HNO3 from the gas into the particle phase which is too large and happens too early in the simulation of the Arctic winter. In turn, the permanent redistribution of HNO3 is smaller in the simulations than in the observations. The Antarctic model run shows too little denitrification at lower altitudes towards the end of the winter compared to the observations. The occurrence of synoptic-scale ice PSCs agrees satisfactorily between observations and simulations for both hemispheres and the simulated vertical redistribution of water vapor (H2O) is in very good agreement with MLS observations. In summary, a conclusive agreement between CLaMS simulations and a variety of independent measurements is presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Spang, Reinhold, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr y Martin Riese. "A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra". Atmospheric Measurement Techniques 9, n.º 8 (9 de agosto de 2016): 3619–39. http://dx.doi.org/10.5194/amt-9-3619-2016.

Texto completo
Resumen
Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006–March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence compared to the real fraction of ice within the PSC area in the polar vortex. The entire MIPAS measurement period was processed with the new classification approach. Examples like the detection of the Antarctic NAT belt during early winter, and its possible link to mountain wave events over the Antarctic Peninsula, which are observed by the Atmospheric Infrared Sounder (AIRS) instrument, highlight the importance of a climatology of 9 Southern Hemisphere and 10 Northern Hemisphere winters in total. The new dataset is valuable both for detailed process studies, and for comparisons with and improvements of the PSC parameterizations used in chemistry transport and climate models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Eichmann, K. U., L. Lelli, C. von Savigny, H. Sembhi y J. P. Burrows. "Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results". Atmospheric Measurement Techniques Discussions 8, n.º 8 (10 de agosto de 2015): 8295–352. http://dx.doi.org/10.5194/amtd-8-8295-2015.

Texto completo
Resumen
Abstract. Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2–3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τN = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τN > 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT for the period from January 2008 to March 2012 were compared, showing good agreement to within 1 km, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfered with the cloud retrieval and inhibited detection of tropospheric clouds. Examples of the impact of these events are shown for the volcanoes Kasatochi in August 2008, Sarychev Peak in June 2009, and Nabro in June 2010. Long-lasting aerosol layers were detected after these events in the Northern Hemisphere down to the tropics. Particle top heights up to about 22 km were retrieved in 2009, when the enhanced lower stratospheric aerosol layer persisted for about 7 months. Up to about 82 % of the Northern hemispheric lower stratosphere between 30° and 70° was covered by scattering particles in August 2009 and nearly half in October 2008.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Blum, U., F. Khosrawi, G. Baumgarten, K. Stebel, R. Müller y K. H. Fricke. "Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations". Annales Geophysicae 24, n.º 12 (21 de diciembre de 2006): 3267–77. http://dx.doi.org/10.5194/angeo-24-3267-2006.

Texto completo
Resumen
Abstract. The importance of polar stratospheric clouds (PSC) for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT) particles observed at the cloud top above Esrange.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Eckermann, Stephen D., Andreas Dörnbrack, Harald Flentje, Simon B. Vosper, M. J. Mahoney, T. Paul Bui y Kenneth S. Carslaw. "Mountain Wave–Induced Polar Stratospheric Cloud Forecasts for Aircraft Science Flights during SOLVE/THESEO 2000". Weather and Forecasting 21, n.º 1 (1 de febrero de 2006): 42–68. http://dx.doi.org/10.1175/waf901.1.

Texto completo
Resumen
Abstract The results of a multimodel forecasting effort to predict mountain wave–induced polar stratospheric clouds (PSCs) for airborne science during the third Stratospheric Aerosol and Gas Experiment (SAGE III) Ozone Loss and Validation Experiment (SOLVE)/Third European Stratospheric Experiment on Ozone (THESEO 2000) Arctic ozone campaign are assessed. The focus is on forecasts for five flights of NASA's instrumented DC-8 research aircraft in which PSCs observed by onboard aerosol lidars were identified as wave related. Aircraft PSC measurements over northern Scandinavia on 25–27 January 2000 were accurately forecast by the mountain wave models several days in advance, permitting coordinated quasi-Lagrangian flights that measured their composition and structure in unprecedented detail. On 23 January 2000 mountain wave ice PSCs were forecast over eastern Greenland. Thick layers of wave-induced ice PSC were measured by DC-8 aerosol lidars in regions along the flight track where the forecasts predicted enhanced stratospheric mountain wave amplitudes. The data from these flights, which were planned using this forecast guidance, have substantially improved the overall understanding of PSC microphysics within mountain waves. Observations of PSCs south of the DC-8 flight track on 30 November 1999 are consistent with forecasts of mountain wave–induced ice clouds over southern Scandinavia, and are validated locally using radiosonde data. On the remaining two flights wavelike PSCs were reported in regions where no mountain wave PSCs were forecast. For 10 December 1999, it is shown that locally generated mountain waves could not have propagated into the stratosphere where the PSCs were observed, confirming conclusions of other recent studies. For the PSC observed on 14 January 2000 over northern Greenland, recent work indicates that nonorographic gravity waves radiated from the jet stream produced this PSC, confirming the original forecast of no mountain wave influence. This forecast is validated further by comparing with a nearby ER-2 flight segment to the south of the DC-8, which intercepted and measured local stratospheric mountain waves with properties similar to those predicted. In total, the original forecast guidance proves to be consistent with PSC data acquired from all five of these DC-8 flights. The work discussed herein highlights areas where improvements can be made in future wave PSC forecasting campaigns, such as use of anelastic rather than Boussinesq linearized gridpoint models and a need to forecast stratospheric gravity waves from sources other than mountains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Worthington, R. M. "An explanation for some fallstreak clouds". Annales Geophysicae 20, n.º 5 (31 de mayo de 2002): 711–15. http://dx.doi.org/10.5194/angeo-20-711-2002.

Texto completo
Resumen
Abstract. Fallstreak cirrus clouds are associated with super-saturated air, together with waves, instabilities and/or turbulence; however, their precise cause is usually uncertain. This paper uses already-published satellite, radiosonde and radar data, reanalysed to study some large fallstreaks which had been previously overlooked. The fallstreaks – up to 60 km long with a parent cloud 20 km wide – are caused by lifting and/or turbulence from a mountain wave, rather than, for example, Kelvin-Helmholtz instabilities. If turbulent breaking of mountain waves affects ice particle formation, this may be relevant for the seeder-feeder effect on orographic rain, and the efficiency of mountain-wave polar stratospheric clouds for ozone depletion.Key words. Meteorology and atmospheric dynamics (turbulence; waves and tides) – Atmospheric composition and structure (cloud physics and chemistry)
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Eichmann, Kai-Uwe, Luca Lelli, Christian von Savigny, Harjinder Sembhi y John P. Burrows. "Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results". Atmospheric Measurement Techniques 9, n.º 2 (2 de marzo de 2016): 793–815. http://dx.doi.org/10.5194/amt-9-793-2016.

Texto completo
Resumen
Abstract. Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV–visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land–sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kodera, Kunihiko, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno y Toshihiko Hirooka. "Stratospheric tropical warming event and its impact on the polar and tropical troposphere". Atmospheric Chemistry and Physics 17, n.º 1 (12 de enero de 2017): 615–25. http://dx.doi.org/10.5194/acp-17-615-2017.

Texto completo
Resumen
Abstract. Stratosphere–troposphere coupling is investigated in relation to middle atmospheric subtropical jet (MASTJ) variations in boreal winter. An exceptional strengthening of the MASTJ occurred in association with a sudden equatorward shift of the stratospheric polar night jet (PNJ) in early December 2011. This abrupt transformation of the MASTJ and PNJ had no apparent relation to the upward propagation of planetary waves from the troposphere. The impact of this stratospheric event penetrated into the troposphere in two regions: in the northern polar region and the tropics. Due to the strong MASTJ, planetary waves at higher latitudes were deflected and trapped in the northern polar region. Trapping of the planetary waves resulted in amplification of zonal wave number 1 component, which appeared in the troposphere as the development of a trough over the Atlantic sector and a ridge over the Eurasian sector. A strong MASTJ also suppressed the equatorward propagation of planetary waves, which resulted in weaker tropical stratospheric upwelling and produced anomalous warming in the tropical stratosphere. In the tropical tropopause layer (TTL), however, sublimation of ice clouds kept the temperature change minor. In the troposphere, an abrupt termination of a Madden–Julian Oscillation (MJO) event occurred following the static stability increase in the TTL. This termination suggests that the stratospheric event affected the convective episode in the troposphere.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Lelieveld, J., C. Brühl, P. Jöckel, B. Steil, P. J. Crutzen, H. Fischer, M. A. Giorgetta et al. "Stratospheric dryness". Atmospheric Chemistry and Physics Discussions 6, n.º 6 (14 de noviembre de 2006): 11247–98. http://dx.doi.org/10.5194/acpd-6-11247-2006.

Texto completo
Resumen
Abstract. The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of models which are able to reproduce the observations. Here we examine results from a new atmospheric chemistry general circulation model (ECHAM5/MESSy1) together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent recurrent features such as the semi-annual oscillation (SAO) and the quasi-biennual oscillation (QBO), indicating that dynamical and radiation processes are simulated accurately. The model reproduces the very low water vapor mixing ratios (1–2 ppmv) periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured, albeit that the model underestimates convective overshooting and consequent moistening events. Our results show that the entry of tropospheric air into the stratosphere at low latitudes is forced by large-scale wave dynamics; however, radiative cooling can regionally limit the upwelling or even cause downwelling. In the cold air above cumulonimbus anvils thin cirrus desiccates the air through the sedimentation of ice particles, similar to polar stratospheric clouds. Transport deeper into the stratosphere occurs in regions where radiative heating becomes dominant, to a large extent in the subtropics. During summer the stratosphere is moistened by the monsoon, most strongly over Southeast Asia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kärcher, B. y W. Haag. "Factors controlling upper tropospheric relative humidity". Annales Geophysicae 22, n.º 3 (19 de marzo de 2004): 705–15. http://dx.doi.org/10.5194/angeo-22-705-2004.

Texto completo
Resumen
Abstract. Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI) under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003), clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous)
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zasetsky, A. Y., K. Gilbert, I. Galkina, S. McLeod y J. J. Sloan. "Properties of polar stratospheric clouds obtained by combined ACE-FTS and ACE-Imager extinction measurements". Atmospheric Chemistry and Physics Discussions 7, n.º 5 (12 de septiembre de 2007): 13271–90. http://dx.doi.org/10.5194/acpd-7-13271-2007.

Texto completo
Resumen
Abstract. We report the compositions and size distributions of aerosol particles in typical polar stratospheric clouds (PSCs) observed between 24 January and 28 February 2005 in the Arctic stratosphere. The results are obtained by combining the extinction measurements made by the Atmospheric Chemistry Experiment (ACE) Fourier-Transform Spectrometer and the visible/near IR imagers on the SCISAT satellite. The extended wavenumber range provided by this combination (750 to 20 000 cm−1) enables the retrieval of aerosol particle sizes between 0.05 and 10 μm as well as providing extensive information about the compositions. Our results indicate that liquid ternary solutions with a high (>30 wt%) content of HNO3 were the most probable component of the clouds at the (60–70° N) latitudes accessible by ACE. The mean size of these ternary aerosol particles is in the range of 0.3 to 0.8 μm. Less abundant, although still frequent, were clouds composed of NAT particles having radii in the range of 1 μm and clouds of ice particles having mean radii in the 4–5 μm range. In some cases, these last two types were found in the same observation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía