Índice
Literatura académica sobre el tema "Stratégies de préhension"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Stratégies de préhension".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Stratégies de préhension"
Mathieu, Marie-Eve. "Diabetaction – Programme d’exercices pour personnes diabétiques de type 2 ou à risque : effets sur la pratique d’activités physiques, la condition physique, la qualité de vie et différents paramètres de santé". Applied Physiology, Nutrition, and Metabolism 33, n.º 6 (diciembre de 2008): 1259–60. http://dx.doi.org/10.1139/h08-100.
Texto completoTesis sobre el tema "Stratégies de préhension"
Reghem, Elodie. "Stratégies comportementales et cinématiques de la préhension chez les primates". Phd thesis, Toulon, 2012. http://tel.archives-ouvertes.fr/tel-00829107.
Texto completoBarbedette, Bertrand. "Pédalage du cycliste et préhension pollicidigitale : étude biomécanique et identification de stratégies motrices". Le Mans, 1999. http://www.theses.fr/1999LEMA1004.
Texto completoMichel, Cédric. "Stratégie de saisie pour une main robotisée à caractère anthropomorphique". Paris 6, 2006. http://www.theses.fr/2006PA066387.
Texto completoYesudasu, Santheep. "Cοntributiοn à la manipulatiοn de cοlis sοus cοntraintes par un tοrse humanοïde : applicatiοn à la dépaléttisatiοn autοnοme dans les entrepôts lοgistiques". Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04874770.
Texto completoThis PhD thesis explores the development and implementation of URNik-AI, an AI-powered automated depalletizing system designed to handle cardboard boxes of varying sizes and weights using a dual-arm humanoid torso. The primary objective is to enhance the efficiency, accuracy, and reliability of industrial depalletizing tasks through the integration of advanced robotics, computer vision, and deep learning techniques.The URNik-AI system consists of two UR10 robotic arms equipped with six-axis force/torque sensors and gripper tool sets. An ASUS Xtion RGB-D camera is mounted on Dynamixel Pro H42 pan-tilt servos to capture high-resolution images and depth data. The software framework includes ROS Noetic, ROS 2, and the MoveIt framework, enabling seamless communication and coordination of complex movements. This system ensures high precision in detecting, grasping, and handling objects in diverse industrial environments.A significant contribution of this research is the implementation of deep learning models, such as YOLOv3 and YOLOv8, to enhance object detection and pose estimation capabilities. YOLOv3, trained on a dataset of 807 images, achieved F1-scores of 0.81 and 0.90 for single and multi-face boxes, respectively. The YOLOv8 model further advanced the system's performance by providing keypoint and skeleton detection capabilities, which are essential for accurate grasping and manipulation. The integration of point cloud data for pose estimation ensured precise localization and orientation of boxes.Comprehensive testing demonstrated the system's robustness, with high precision, recall, and mean average precision (mAP) metrics confirming its effectiveness. This thesis makes several significant contributions to the field of robotics and automation, including the successful integration of advanced robotics and AI technologies, the development of innovative object detection and pose estimation techniques, and the design of a versatile and adaptable system architecture