Literatura académica sobre el tema "Stochastic rounding"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Stochastic rounding".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Stochastic rounding"
Paxton, E. Adam, Matthew Chantry, Milan Klöwer, Leo Saffin y Tim Palmer. "Climate Modeling in Low Precision: Effects of Both Deterministic and Stochastic Rounding". Journal of Climate 35, n.º 4 (15 de febrero de 2022): 1215–29. http://dx.doi.org/10.1175/jcli-d-21-0343.1.
Texto completoConnolly, Michael P., Nicholas J. Higham y Theo Mary. "Stochastic Rounding and Its Probabilistic Backward Error Analysis". SIAM Journal on Scientific Computing 43, n.º 1 (enero de 2021): A566—A585. http://dx.doi.org/10.1137/20m1334796.
Texto completoGupta, Anupam, R. Ravi y Amitabh Sinha. "LP Rounding Approximation Algorithms for Stochastic Network Design". Mathematics of Operations Research 32, n.º 2 (mayo de 2007): 345–64. http://dx.doi.org/10.1287/moor.1060.0237.
Texto completoArciniega, Armando y Edward Allen. "Rounding Error in Numerical Solution of Stochastic Differential Equations". Stochastic Analysis and Applications 21, n.º 2 (4 de enero de 2003): 281–300. http://dx.doi.org/10.1081/sap-120019286.
Texto completoArar, El-Mehdi El, Devan Sohier, Pablo de Oliveira Castro y Eric Petit. "Stochastic Rounding Variance and Probabilistic Bounds: A New Approach". SIAM Journal on Scientific Computing 45, n.º 5 (5 de octubre de 2023): C255—C275. http://dx.doi.org/10.1137/22m1510819.
Texto completoMcCarl, Bruce A. "Generalized Stochastic Dominance: An Empirical Examination". Journal of Agricultural and Applied Economics 22, n.º 2 (diciembre de 1990): 49–55. http://dx.doi.org/10.1017/s1074070800001796.
Texto completoHopkins, Michael, Mantas Mikaitis, Dave R. Lester y Steve Furber. "Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, n.º 2166 (20 de enero de 2020): 20190052. http://dx.doi.org/10.1098/rsta.2019.0052.
Texto completoJi, Sai, Dachuan Xu, Donglei Du y Yijing Wang. "LP-rounding approximation algorithms for two-stage stochastic fault-tolerant facility location problem". Applied Mathematical Modelling 58 (junio de 2018): 76–85. http://dx.doi.org/10.1016/j.apm.2017.12.009.
Texto completoTovissodé, Chénangnon Frédéric, Sèwanou Hermann Honfo, Jonas Têlé Doumatè y Romain Glèlè Kakaï. "On the Discretization of Continuous Probability Distributions Using a Probabilistic Rounding Mechanism". Mathematics 9, n.º 5 (6 de marzo de 2021): 555. http://dx.doi.org/10.3390/math9050555.
Texto completoЧубич, Владимир Михайлович y Светлана Олеговна Кулабухова. "Square-root algorithms for robust modifications of the continuous-discrete cubature Kalman filter". Вычислительные технологии, n.º 3 (15 de julio de 2020): 88–98. http://dx.doi.org/10.25743/ict.2020.25.3.010.
Texto completoTesis sobre el tema "Stochastic rounding"
El, Arar El-Mehdi. "Stochastic models for the evaluation of numerical errors". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG104.
Texto completoThe idea of assuming rounding errors as random variables is not new. Based on tools such as independent random variables or the Central Limit Theorem, various propositions have demonstrated error bounds in O(√n). This thesis is dedicated to studying stochastic rounding (SR) as a replacement for the default deterministic rounding mode. First, we introduce a new approach to derive a probabilistic error bound in O(√n) based on variance calculation and Bienaymé-Chebyshev inequality. Second, we demonstrate a general framework that allows the probabilistic error analysis of algorithms under SR. In this context, we decompose the error into a martingale plus a drift. We show that the drift is zero for algorithms with multi-linear errors, while the probabilistic analysis of the martingale term leads to probabilistic error bounds in O(√n). We show that the drift is negligible at the first order compared to the martingale term for the variance computation, and we prove probabilistic error bounds in O(√n)
Picot, Romain. "Amélioration de la fiabilité numérique de codes de calcul industriels". Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS242.
Texto completoMany studies are devoted to performance of numerical simulations. However it is also important to take into account the impact of rounding errors on the results produced. These rounding errors can be estimated with Discrete Stochastic Arithmetic (DSA), implemented in the CADNA library. Compensated algorithms improve the accuracy of results, without changing the numerical types used. They have been designed to be generally executed with rounding to nearest. We have established error bounds for these algorithms with directed rounding and shown that they can be used successfully with the random rounding mode of DSA. We have also studied the impact of a target precision of the results on the numerical types of the different variables. We have developed the PROMISE tool which automatically performs these type changes while validating the results thanks to DSA. The PROMISE tool has thus provided new configurations of types combining single and double precision in various programs and in particular in the MICADO code developed at EDF. We have shown how to estimate with DSA rounding errors generated in quadruple precision. We have proposed a version of CADNA that integrates quadruple precision and that allowed us in particular to validate the computation of multiple roots of polynomials. Finally we have used this new version of CADNA in the PROMISE tool so that it can provide configurations with three types (single, double and quadruple precision)
Huber, Anna [Verfasser]. "Randomized rounding and rumor spreading with stochastic dependencies / vorgelegt von Anna Huber". 2010. http://d-nb.info/1008296163/34.
Texto completoCapítulos de libros sobre el tema "Stochastic rounding"
Giessing, Sarah. "Flexible Rounding Based on Consistent Post-tabular Stochastic Noise". En Privacy in Statistical Databases, 22–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33627-0_3.
Texto completoYuan, Geng, Sung-En Chang, Qing Jin, Alec Lu, Yanyu Li, Yushu Wu, Zhenglun Kong et al. "You Already Have It: A Generator-Free Low-Precision DNN Training Framework Using Stochastic Rounding". En Lecture Notes in Computer Science, 34–51. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19775-8_3.
Texto completoActas de conferencias sobre el tema "Stochastic rounding"
Mikaitis, Mantas. "Stochastic Rounding: Algorithms and Hardware Accelerator". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533756.
Texto completoChang, Sung-En, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Zhengang Li et al. "Hardware-efficient stochastic rounding unit design for DNN training". En DAC '22: 59th ACM/IEEE Design Automation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3489517.3530619.
Texto completoArar, El-Mehdi El, Devan Sohier, Pablo de Oliveira Castro y Eric Petit. "The Positive Effects of Stochastic Rounding in Numerical Algorithms". En 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE, 2022. http://dx.doi.org/10.1109/arith54963.2022.00018.
Texto completoQian Zhang, Sai, Bradley McDanel y H. T. Kung. "FAST: DNN Training Under Variable Precision Block Floating Point with Stochastic Rounding". En 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022. http://dx.doi.org/10.1109/hpca53966.2022.00067.
Texto completoEssam, Mohaned, Tong Boon Tang, Eric Tatt Wei Ho y Hsin Chen. "Dynamic point stochastic rounding algorithm for limited precision arithmetic in Deep Belief Network training". En 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. http://dx.doi.org/10.1109/ner.2017.8008430.
Texto completoChang, Sung-En, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Zhengang Li et al. "ESRU: Extremely Low-Bit and Hardware-Efficient Stochastic Rounding Unit Design for Low-Bit DNN Training". En 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. http://dx.doi.org/10.23919/date56975.2023.10137222.
Texto completoGhenaiet, Adel. "Study of Sand Particle Trajectories and Erosion Into the First Fan Stage of a Turbofan". En ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22415.
Texto completoDodson, C. T. J. y W. W. Sampson. "Effect of Correlated Free Fibre Lengths on Pore Size Distribution in Fibrous Mats". En Advances in Paper Science and Technology, editado por S. J. I’Anson. Fundamental Research Committee (FRC), Manchester, 2005. http://dx.doi.org/10.15376/frc.2005.2.943.
Texto completo