Literatura académica sobre el tema "Stochastic Fokker-Planck"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Stochastic Fokker-Planck".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Stochastic Fokker-Planck"
Liu, Chang, Chuo Chang y Zhe Chang. "Distribution of Return Transition for Bohm-Vigier Stochastic Mechanics in Stock Market". Symmetry 15, n.º 7 (17 de julio de 2023): 1431. http://dx.doi.org/10.3390/sym15071431.
Texto completoCoghi, Michele y Benjamin Gess. "Stochastic nonlinear Fokker–Planck equations". Nonlinear Analysis 187 (octubre de 2019): 259–78. http://dx.doi.org/10.1016/j.na.2019.05.003.
Texto completoChavanis, Pierre-Henri. "Generalized Stochastic Fokker-Planck Equations". Entropy 17, n.º 5 (13 de mayo de 2015): 3205–52. http://dx.doi.org/10.3390/e17053205.
Texto completoLin, Y. K. y G. Q. Cai. "Equivalent Stochastic Systems". Journal of Applied Mechanics 55, n.º 4 (1 de diciembre de 1988): 918–22. http://dx.doi.org/10.1115/1.3173742.
Texto completoKOTELENEZ, PETER M. "A QUASI-LINEAR STOCHASTIC FOKKER–PLANCK EQUATION IN σ-FINITE MEASURES". Stochastics and Dynamics 08, n.º 03 (septiembre de 2008): 475–504. http://dx.doi.org/10.1142/s021949370800241x.
Texto completoSun, Xu, Xiaofan Li y Yayun Zheng. "Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise". Stochastics and Dynamics 17, n.º 05 (23 de septiembre de 2016): 1750033. http://dx.doi.org/10.1142/s0219493717500332.
Texto completoHirpara, Ravish Himmatlal y Shambhu Nath Sharma. "An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations". International Journal of System Dynamics Applications 9, n.º 1 (enero de 2020): 18–43. http://dx.doi.org/10.4018/ijsda.2020010102.
Texto completoAnnunziato, Mario y Alfio Borzì. "OPTIMAL CONTROL OF PROBABILITY DENSITY FUNCTIONS OF STOCHASTIC PROCESSES". Mathematical Modelling and Analysis 15, n.º 4 (15 de noviembre de 2010): 393–407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407.
Texto completoANNUNZIATO, M. y A. BORZI. "FOKKER–PLANCK-BASED CONTROL OF A TWO-LEVEL OPEN QUANTUM SYSTEM". Mathematical Models and Methods in Applied Sciences 23, n.º 11 (23 de julio de 2013): 2039–64. http://dx.doi.org/10.1142/s0218202513500255.
Texto completoRENNER, CHRISTOPH, J. PEINKE y R. FRIEDRICH. "Experimental indications for Markov properties of small-scale turbulence". Journal of Fluid Mechanics 433 (25 de abril de 2001): 383–409. http://dx.doi.org/10.1017/s0022112001003597.
Texto completoTesis sobre el tema "Stochastic Fokker-Planck"
Adesina, Owolabi Abiona. "Statistical Modelling and the Fokker-Planck Equation". Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1177.
Texto completoGuillouzic, Steve. "Fokker-Planck approach to stochastic delay differential equations". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Texto completoNoble, Patrick. "Stochastic processes in Astrophysics". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10013.
Texto completoLi, Wuchen. "A study of stochastic differential equations and Fokker-Planck equations with applications". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54999.
Texto completoMiserocchi, Andrea. "The Fokker-Planck equation as model for the stochastic gradient descent in deep learning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18290/.
Texto completoЮщенко, Ольга Володимирівна, Ольга Владимировна Ющенко, Olha Volodymyrivna Yushchenko, Тетяна Іванівна Жиленко, Татьяна Ивановна Жиленко y Tetiana Ivanivna Zhylenko. "Description of the Stochastic Condensation Process under Quasi-Equilibrium Conditions". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34910.
Texto completoДенисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, V. V. Reva y O. O. Bondar. "Generalized Fokker-Planck Equation for the Nanoparticle Magnetic Moment Driven by Poisson White Noise". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35373.
Texto completoLi, Yao. "Stochastic perturbation theory and its application to complex biological networks -- a quantification of systematic features of biological networks". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49013.
Texto completoVellmer, Sebastian. "Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Texto completoThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Sjöberg, Paul. "Numerical Methods for Stochastic Modeling of Genes and Proteins". Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8293.
Texto completoLibros sobre el tema "Stochastic Fokker-Planck"
Frank, T. D. Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2004.
Buscar texto completoGrasman, Johan. Asymptotic methods for the Fokker-Planck equation and the exit problem in applications. Berlin: Springer, 1999.
Buscar texto completoChirikjian, Gregory S. Stochastic models, information theory, and lie groups. Boston: Birkhäuser, 2009.
Buscar texto completoFokker-Planck-Kolmogorov equations. Providence, Rhode Island: American Mathematical Society, 2015.
Buscar texto completoKrylov, Nicolai V., Michael Rockner, Vladimir I. Bogachev y Stanislav V. Shaposhnikov. Fokker-Planck-Kolmogorov Equations. American Mathematical Society, 2015.
Buscar texto completoNonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2005.
Buscar texto completoPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.
Buscar texto completoPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2016.
Buscar texto completoPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer London, Limited, 2014.
Buscar texto completoMcClintock, P. V. E. y Frank Moss. Noise in Nonlinear Dynamical Systems Vol. 1: Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Stochastic Fokker-Planck"
Loos, Sarah A. M. "Fokker-Planck Equations". En Stochastic Systems with Time Delay, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_3.
Texto completoLoos, Sarah A. M. "Infinite Fokker-Planck Hierarchy". En Stochastic Systems with Time Delay, 121–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_5.
Texto completoRodean, Howard C. "The Fokker-Planck Equation". En Stochastic Lagrangian Models of Turbulent Diffusion, 19–24. Boston, MA: American Meteorological Society, 1996. http://dx.doi.org/10.1007/978-1-935704-11-9_5.
Texto completoQian, Hong y Hao Ge. "Stochastic Processes, Fokker-Planck Equation". En Encyclopedia of Systems Biology, 2000–2004. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_279.
Texto completoBogachev, Vladimir I. "Stationary Fokker–Planck–Kolmogorov Equations". En Stochastic Partial Differential Equations and Related Fields, 3–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_1.
Texto completoDa Prato, Giuseppe. "Fokker–Planck Equations in Hilbert Spaces". En Stochastic Partial Differential Equations and Related Fields, 101–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_5.
Texto completoMöhl, Dieter. "The Distribution Function and Fokker-Planck Equations". En Stochastic Cooling of Particle Beams, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34979-9_7.
Texto completoCarmichael, Howard J. "Fokker—Planck Equations and Stochastic Differential Equations". En Statistical Methods in Quantum Optics 1, 147–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03875-8_5.
Texto completoShaposhnikov, Stanislav V. "Nonlinear Fokker–Planck–Kolmogorov Equations for Measures". En Stochastic Partial Differential Equations and Related Fields, 367–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_24.
Texto completoYoshida, T. y S. Yanagita. "A Stochastic Simulation Method for Fokker-Planck Equations". En Numerical Astrophysics, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_121.
Texto completoActas de conferencias sobre el tema "Stochastic Fokker-Planck"
Metzler, Ralf. "From the Langevin equation to the fractional Fokker–Planck equation". En Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.
Texto completoHolliday, G. S. y Surendra Singh. "Second harmonic generation in the positive P-representation". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wr6.
Texto completoAllison, A. "Stochastic Resonance, Brownian Ratchets and the Fokker-Planck Equation". En UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN 2002: Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1584877.
Texto completoWedig, Walter V. y Utz von Wagner. "Stochastic Car Vibrations With Strong Nonlinearities". En ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21605.
Texto completoWang, Yan. "Simulating Drift-Diffusion Processes With Generalized Interval Probability". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70699.
Texto completoClaussen, Jens Christian. "Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations". En Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-1.
Texto completoKumar, Mrinal, Suman Chakravorty y John Junkins. "Computational Nonlinear Stochastic Control Based on the Fokker-Planck-Kolmogorov Equation". En AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6477.
Texto completoHorowicz, R. J. y L. A. Lugiato. "Noise Effects In Optical Bistability". En Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wd2.
Texto completoKikuchi, T., S. Kawata y T. Katayama. "Numerical solver with cip method for Fokker Planck equation of stochastic cooling". En 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440417.
Texto completoDas, Shreepriya, Haris Vikalo y Arjang Hassibi. "Stochastic modeling of reaction kinetics in biosensors using the Fokker Planck equation". En 2009 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2009. http://dx.doi.org/10.1109/gensips.2009.5174363.
Texto completoInformes sobre el tema "Stochastic Fokker-Planck"
Marriner, John. Simulations of Transverse Stochastic Cooling Using the Fokker-Planck Equation. Office of Scientific and Technical Information (OSTI), marzo de 1998. http://dx.doi.org/10.2172/1985058.
Texto completoKumar, Manish y Subramanian Ramakrishnan. Modeling and Analysis of Stochastic Dynamics and Emergent Phenomena in Swarm Robotic Systems Using the Fokker-Planck Formalism. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2010. http://dx.doi.org/10.21236/ada547014.
Texto completoYu, D. y S. Chakravorty. A Multi-Resolution Approach to the Fokker-Planck-Kolmogorov Equation with Application to Stochastic Nonlinear Filtering and Optimal Design. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2012. http://dx.doi.org/10.21236/ada582272.
Texto completoSnyder, Victor A., Dani Or, Amos Hadas y S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, abril de 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Texto completo