Literatura académica sobre el tema "Statistical graph analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Statistical graph analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Statistical graph analysis"
Jain, Brijnesh J. "Statistical graph space analysis". Pattern Recognition 60 (diciembre de 2016): 802–12. http://dx.doi.org/10.1016/j.patcog.2016.06.023.
Texto completoMartins, Maria Maria Pereira, Carolina Fernandes de Carvalho y Carlos Eduardo Ferreira Monteiro. "The analysis of statistical graphs constructed by primary school teachers". Acta Scientiae 23, n.º 6 (18 de noviembre de 2021): 28–57. http://dx.doi.org/10.17648/acta.scientiae.6762.
Texto completoNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs". Advances in Applied Probability 20, n.º 02 (junio de 1988): 315–30. http://dx.doi.org/10.1017/s0001867800016992.
Texto completoNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs". Advances in Applied Probability 20, n.º 2 (junio de 1988): 315–30. http://dx.doi.org/10.2307/1427392.
Texto completoLin, Zhenxian, Jiagang Wang y Chengmao Wu. "Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model". Axioms 11, n.º 6 (5 de junio de 2022): 269. http://dx.doi.org/10.3390/axioms11060269.
Texto completoHora, Akihito. "Central Limit Theorems and Asymptotic Spectral Analysis on Large Graphs". Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, n.º 02 (abril de 1998): 221–46. http://dx.doi.org/10.1142/s0219025798000144.
Texto completoKalikova, A. "Statistical analysis of random walks on network". Scientific Journal of Astana IT University, n.º 5 (27 de julio de 2021): 77–83. http://dx.doi.org/10.37943/aitu.2021.99.34.007.
Texto completoTurab, Ali, Wutiphol Sintunavarat y Jong-Suk Ro. "On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT". Fractal and Fractional 7, n.º 2 (17 de enero de 2023): 99. http://dx.doi.org/10.3390/fractalfract7020099.
Texto completoZhao, Jin-Hua. "A local algorithm and its percolation analysis of bipartite z-matching problem". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 5 (1 de mayo de 2023): 053401. http://dx.doi.org/10.1088/1742-5468/acd105.
Texto completoGhazwani, Haleemah, Muhammad Faisal Nadeem, Faiza Ishfaq y Ali N. A. Koam. "On Entropy of Some Fractal Structures". Fractal and Fractional 7, n.º 5 (30 de abril de 2023): 378. http://dx.doi.org/10.3390/fractalfract7050378.
Texto completoTesis sobre el tema "Statistical graph analysis"
Fairbanks, James Paul. "Graph analysis combining numerical, statistical, and streaming techniques". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54972.
Texto completoSoriani, Nicola. "Topics in Statistical Models for Network Analysis". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422100.
Texto completoLa Network Analysis è un insieme di tecniche statistiche e matematiche per lo studio di dati relazionali per un sistema di entità interconnesse. Molti dei risultati per i dati di rete provengono dalla Social Network Analysis (SNA), incentrata principalmente sullo studio delle relazioni tra un insieme di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la modellazione statistica per dati di rete, con particolare attenzione ai modelli utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4 e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei modelli esponenziali per grafi casuali (Exponential Random Graph Models - ERGMs). Nel capitolo 4, l'approccio di modellazione ERGM e quello a Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel capitolo 5, vengono proposti metodi alternativi per la stima della classe di modelli p2.
GRASSI, FRANCESCO. "Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology". Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710580.
Texto completoMeinhardt, Llopis Enric. "Morphological and statistical techniques for the analysis of 3D images". Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22719.
Texto completoThis thesis proposes a tree data structure to encode the connected components of level sets of 3D images. This data structure is applied as a main tool in several proposed applications: 3D morphological operators, medical image visualization, analysis of color histograms, object tracking in videos and edge detection. Motivated by the problem of edge linking, the thesis contains also an study of anisotropic total variation denoising as a tool for computing anisotropic Cheeger sets. These anisotropic Cheeger sets can be used to find global optima of a class of edge linking functionals. They are also related to some affine invariant descriptors which are used in object recognition, and this relationship is laid out explicitly.
Tavernari, Daniele. "Statistical and network-based methods for the analysis of chromatin accessibility maps in single cells". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12297/.
Texto completoValba, Olga. "Statistical analysis of networks and biophysical systems of complex architecture". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00919606.
Texto completoKamal, Tariq. "Computational Cost Analysis of Large-Scale Agent-Based Epidemic Simulations". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82507.
Texto completoPh. D.
Jiang, Shan. "Statistical Modeling of Multi-Dimensional Knowledge Diffusion Networks: An ERGM-Based Framework". Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/555946.
Texto completoLamont, Morné Michael Connell. "Binary classification trees : a comparison with popular classification methods in statistics using different software". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52718.
Texto completoENGLISH ABSTRACT: Consider a data set with a categorical response variable and a set of explanatory variables. The response variable can have two or more categories and the explanatory variables can be numerical or categorical. This is a typical setup for a classification analysis, where we want to model the response based on the explanatory variables. Traditional statistical methods have been developed under certain assumptions such as: the explanatory variables are numeric only and! or the data follow a multivariate normal distribution. hl practice such assumptions are not always met. Different research fields generate data that have a mixed structure (categorical and numeric) and researchers are often interested using all these data in the analysis. hl recent years robust methods such as classification trees have become the substitute for traditional statistical methods when the above assumptions are violated. Classification trees are not only an effective classification method, but offer many other advantages. The aim of this thesis is to highlight the advantages of classification trees. hl the chapters that follow, the theory of and further developments on classification trees are discussed. This forms the foundation for the CART software which is discussed in Chapter 5, as well as other software in which classification tree modeling is possible. We will compare classification trees to parametric-, kernel- and k-nearest-neighbour discriminant analyses. A neural network is also compared to classification trees and finally we draw some conclusions on classification trees and its comparisons with other methods.
AFRIKAANSE OPSOMMING: Beskou 'n datastel met 'n kategoriese respons veranderlike en 'n stel verklarende veranderlikes. Die respons veranderlike kan twee of meer kategorieë hê en die verklarende veranderlikes kan numeries of kategories wees. Hierdie is 'n tipiese opset vir 'n klassifikasie analise, waar ons die respons wil modelleer deur gebruik te maak van die verklarende veranderlikes. Tradisionele statistiese metodes is ontwikkelonder sekere aannames soos: die verklarende veranderlikes is slegs numeries en! of dat die data 'n meerveranderlike normaal verdeling het. In die praktyk word daar nie altyd voldoen aan hierdie aannames nie. Verskillende navorsingsvelde genereer data wat 'n gemengde struktuur het (kategories en numeries) en navorsers wil soms al hierdie data gebruik in die analise. In die afgelope jare het robuuste metodes soos klassifikasie bome die alternatief geword vir tradisionele statistiese metodes as daar nie aan bogenoemde aannames voldoen word nie. Klassifikasie bome is nie net 'n effektiewe klassifikasie metode nie, maar bied baie meer voordele. Die doel van hierdie werkstuk is om die voordele van klassifikasie bome uit te wys. In die hoofstukke wat volg word die teorie en verdere ontwikkelinge van klassifikasie bome bespreek. Hierdie vorm die fondament vir die CART sagteware wat bespreek word in Hoofstuk 5, asook ander sagteware waarin klassifikasie boom modelering moontlik is. Ons sal klassifikasie bome vergelyk met parametriese-, "kernel"- en "k-nearest-neighbour" diskriminant analise. 'n Neurale netwerk word ook vergelyk met klassifikasie bome en ten slote word daar gevolgtrekkings gemaak oor klassifikasie bome en hoe dit vergelyk met ander metodes.
Noel, Jonathan A. "Extremal combinatorics, graph limits and computational complexity". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8743ff27-b5e9-403a-a52a-3d6299792c7b.
Texto completoLibros sobre el tema "Statistical graph analysis"
Kalyagin, V. A., A. P. Koldanov, P. A. Koldanov y P. M. Pardalos. Statistical Analysis of Graph Structures in Random Variable Networks. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60293-2.
Texto completoLangtangen, Hans Petter. Solving PDEs in Python: The FEniCS Tutorial I. Cham: Springer Nature, 2017.
Buscar texto completoBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial : interdisciplinary statistics. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Buscar texto completoBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Buscar texto completoWhittaker, J. Graphical models in applied multivariate statistics. Chichester [England]: Wiley, 1990.
Buscar texto completoBarthélemy, Jean-Pierre. Trees and proximity representations. Chichester: Wiley, 1991.
Buscar texto completoPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2a ed. London: J. Wiley & Sons, 2010.
Buscar texto completoPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2a ed. London: J. Wiley & Sons, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Statistical graph analysis"
Marasinghe, Mervyn G. y William J. Kennedy. "Statistical Graphics Using SAS/GRAPH". En SAS for Data Analysis, 1–58. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77372-8_3.
Texto completoRupp, Matthias. "Graph Kernels". En Statistical and Machine Learning Approaches for Network Analysis, 217–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch8.
Texto completoLange, Kenneth. "Descent Graph Methods". En Mathematical and Statistical Methods for Genetic Analysis, 169–201. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21750-5_9.
Texto completoAh-Pine, Julien. "Graph Clustering by Maximizing Statistical Association Measures". En Advances in Intelligent Data Analysis XII, 56–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41398-8_6.
Texto completoGras, Régis, Antoine Bodin, Raphaël Couturier y Pablo Gregori. "Fractal Dimension of an Implicative Graph". En The Theory of Statistical Implicative Analysis, 179–89. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-16.
Texto completoMiasnikof, Pierre, Alexander Y. Shestopaloff, Anthony J. Bonner y Yuri Lawryshyn. "A Statistical Performance Analysis of Graph Clustering Algorithms". En Lecture Notes in Computer Science, 170–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92871-5_11.
Texto completovor der Brück, Tim. "Hyponym Extraction Employing a Weighted Graph Kernel". En Statistical and Machine Learning Approaches for Network Analysis, 303–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch11.
Texto completoGras, Régis, Antoine Bodin, Raphaël Couturier y Pablo Gregori. "A Mechanical Metaphor of the Implicative Graph of Statistical Implicative Analysis". En The Theory of Statistical Implicative Analysis, 201–6. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-18.
Texto completoKutzelnigg, Reinhard. "The Structure of an Evolving Random Bipartite Graph". En Statistical and Machine Learning Approaches for Network Analysis, 191–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch7.
Texto completoLi, Shoumei y Yukio Ogura. "Convergence in graph for fuzzy valued martingales and smartingales". En Statistical Modeling, Analysis and Management of Fuzzy Data, 72–89. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1800-0_5.
Texto completoActas de conferencias sobre el tema "Statistical graph analysis"
Fairbanks, James, David Ediger, Rob McColl, David A. Bader y Eric Gilbert. "A statistical framework for streaming graph analysis". En ASONAM '13: Advances in Social Networks Analysis and Mining 2013. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2492517.2492620.
Texto completoChen, Jia, Gang Wang, Yanning Shen y Georgios B. Giannakis. "Canonical Correlation Analysis with Common Graph Priors". En 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450749.
Texto completoVillafane-Delgado, Marisel y Selin Aviyente. "Temporal network tracking based on tensor factor analysis of graph signal spectrum". En 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551718.
Texto completoKim, Won Hwa, Vikas Singh, Moo K. Chung, Nagesh Adluru, Barbara B. Bendlin y Sterling C. Johnson. "Multi-resolution statistical analysis on graph structured data in neuroimaging". En 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7164173.
Texto completoMadhuri, Mrs A. y T. Uma Devi. "Statistical Analysis of Design Aspects on Various Graph Embedding Learning Classifiers". En 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2023. http://dx.doi.org/10.1109/iccmc56507.2023.10083741.
Texto completoXue-Xin Liu, S. X.-D. Tan y Hai Wang. "Parallel statistical analysis of analog circuits by GPU-accelerated graph-based approach". En 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE 2012). IEEE, 2012. http://dx.doi.org/10.1109/date.2012.6176615.
Texto completoKaurov, B. "A NEW APPROACH TO THE CONSTRUCTION OF A HUMAN AGING SCHEME". En XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9bae6739.66243641.
Texto completoPavan Perin, Andréa y Celso Ribeiro Campos. "Reading and Interpretation of Statistical Graphics by 2nd Year Students of High School". En Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t2f1.
Texto completoFreeley, Jennifer, Dmvtro Mishagli, Tom Brazil y Elena Blokhina. "Statistical Simulations of Delay Propagation in Large Scale Circuits Using Graph Traversal and Kernel Function Decomposition". En 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2018. http://dx.doi.org/10.1109/smacd.2018.8434901.
Texto completoMa, Xin, Guorong Wu y Won Hwa Kim. "Enriching Statistical Inferences on Brain Connectivity for Alzheimer's Disease Analysis via Latent Space Graph Embedding". En 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098641.
Texto completoInformes sobre el tema "Statistical graph analysis"
Juden, Matthew, Tichaona Mapuwei, Till Tietz, Rachel Sarguta, Lily Medina, Audrey Prost, Macartan Humphreys et al. Process Outcome Integration with Theory (POInT): academic report. Centre for Excellence and Development Impact and Learning (CEDIL), marzo de 2023. http://dx.doi.org/10.51744/crpp5.
Texto completoStriuk, Andrii, Olena Rybalchenko y Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], noviembre de 2020. http://dx.doi.org/10.31812/123456789/4462.
Texto completo