Tesis sobre el tema "Statistica bivariata"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Statistica bivariata".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Haug, Mark. "Nonparametric density estimation for univariate and bivariate distributions with applications in discriminant analysis for the bivariate case". Thesis, Kansas State University, 1986. http://hdl.handle.net/2097/9916.
Texto completoLiu, Yunfeng. "Tests of Bivariate Stochastic Order". Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20257.
Texto completoOnnen, Nathaniel J. "Estimation of Bivariate Spatial Data". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1616243660473062.
Texto completoCasanova, Gurrera María de los Desamparados. "Construction of Bivariate Distributions and Statistical Dependence Operations". Doctoral thesis, Universitat de Barcelona, 2005. http://hdl.handle.net/10803/1555.
Texto completoAl Capítol 1 de Preliminars es revisen conceptes de dependència generals (classes de Fréchet, còpules, i famílies paramètriques de distribucions). Al Capítol 2, generalitzem les operacions unió i intersecció de dues matrius de distàncies a matrius simètriques semidefinides positives qualssevol. Aquestes operacions s'han mostrat d'utilitat en la interpretació geomètrica del Related Metric Scaling (RMS), i possiblement en altres tècniques d'Anàlisi Multivariant. S'estudien llur propietats que són similars, en alguns aspectes, a les de la unió i intersecció de subespais vectorials. Al Capítol 3 es presenta una extensió al continuu d'aquestes operacions, mitjançant matrius infinites en el context dels operadors integrals acotats i nuclis numèrics. S'estableix la base per a extendre el RMS a variables contínues i, per tant, a matrius infinites. Es parteix del Teorema de Mercer el qual assegura l'existència d'una expansió ortogonal del nucli de la covariança K (s, t) = min {F (s), F (t)} - F (s) F (t), on F és la funció de distribució de cada variable marginal. Els conjunts de valors i funcions pròpies d'aquest nucli ens permeten definir un producte entre nuclis i la intersecció i unió entre nuclis simètrics semidefinits positius. Tals nuclis de covariança s'associen amb distribucions bivariants també simètriques i amb dependència quadrant positiva (PQD). El producte de dos nuclis és un cas particular de covariança entre funcions, que es pot obtenir a partir de les distribucions conjunta i marginals, com s'estudia al Capítol 4 per a funcions de variació afitada, fixada la distribució bivariant H. S'obtenen interessants relacions amb les cotes de Fréchet. Aquesta covariança entre funcions és un producte quasiescalar a l'espai de funcions de variació afitada i permet definir una mesura d'afinitat. Al Capítol 5 aquesta H-afinitat s'utilitza per definir la dimensió d'una distribució. Les components principals d'una variable (Capítol 6) s'utilitzen com a variables canòniques a l'expansió diagonal de Lancaster (Capítol 7 i últim) per a construïr distribucions bivariants amb marginals Uniformes al (0,1), Exponencial de mitjana 1, Logística estàndard, i Pareto (3,1). S'obtenen condicions per la densitat bivariant, correlacions canòniques i correlació màxima per cada família. S'obtenen les còpules corresponents.
Baggs, Maria Geraldine E. "Properties of order statistics from bivariate exponential distributions /". The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487858417983938.
Texto completoKoen, Marthinus Christoffel. "The analysis of some bivariate astronomical time series". Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/17341.
Texto completoIn the first part of the thesis, a linear time domain transfer function is fitted to satellite observations of a variable galaxy, NGC5548. The transfer functions relate an input series (ultraviolet continuum flux) to an output series (emission line flux). The methodology for fitting transfer function is briefly described. The autocorrelation structure of the observations of NGC5548 in different electromagnetic spectral bands is investigated, and appropriate univariate autoregressive moving average models given. The results of extensive transfer function fitting using respectively the λ1337 and λ1350 continuum variations as input series, are presented. There is little evidence for a dead time in the response of the emission line variations which are presumed driven by the continuum. Part 2 of the thesis is devoted to the estimation of the lag between two irregularly spaced astronomical time series. Lag estimation methods which have been used in the astronomy literature are reviewed. Some problems are pointed out, particularly the influence of autocorrelation and non-stationarity of the series. If the two series can be modelled as random walks, both these problems can be dealt with efficiently. Maximum likelihood estimation of the random walk and measurement error variances, as well as the lag between the two series, is discussed. Large-sample properties of the estimators are derived. An efficient computational procedure for the likelihood which exploits the sparseness of the covariance matrix, is briefly described. Results are derived for two example data sets: the variations in the two gravitationally lensed images of a quasar, and brightness changes of the active galaxy NGC3783 in two different wavelengths. The thesis is concluded with a brief consideration of other analysis methods which appear interesting.
He, Qinying. "Inference on correlation from incomplete bivariate samples". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180468775.
Texto completoWang, Chunnan. "Analysis of a new bivariate distribution in reliability theory". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284128.
Texto completoMurphy, Orla. "Copula-based tests of independence for bivariate discrete data". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117229.
Texto completoDe nouvelles statistiques sont proposées pour tester l'indépendance de deux aléas non continus. Ces statistiques, qui mènent à des tests convergents, sont des fonctionnelles de type Cramér–von Mises et Kolmogorov–Smirnov de la copule en damier. La puissance des nouveaux tests est comparée par simulation à celle des tests fondés sur les statistiques du khi-deux de Pearson, du rapport des vraisemblances et de la statistique de Zelterman souvent utilisées dans ce contexte. Pour étudier leur puissance, on génère des données de cinq familles de lois bivariées dont les marges peuvent être connues ou non. Dans tous les cas considérés, les nouveaux tests s'avèrent plus puissants que les tests standard. À l'instar du test de Zelterman, les nouveaux tests maintiennent leur seuil lorsque les données sont clairsemées; comme on le sait, ce n'est pas le cas des tests du khi-deux de Pearson et du rapport des vraisemblances. À la lumière des résultats présentés ici, les nouvelles statistiques de Cramér–von Mises peuvent être recommandées pour tester l'indépendance entre deux aléas en présence d'ex æquo dans les données.
Lin, Min. "Correlation of Bivariate Frailty Models and a New Marginal Weibull Distribution for Correlated Bivariate Survival Data". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321226.
Texto completoRomeiro, Renata Guimarães 1987. "Modelo de regressão Birnbaum-Saunders bivariado". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307091.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T16:29:00Z (GMT). No. of bitstreams: 1 Romeiro_RenataGuimaraes_M.pdf: 10761224 bytes, checksum: 3606332b6846c959d076e318f1667133 (MD5) Previous issue date: 2014
Resumo: O modelo de regressão Birnbaum-Saunders de Rieck e Nedelman (1991) tem sido amplamente discutido por vários autores, com aplicações na área de sobrevivência e confiabilidade. Neste trabalho, desenvolvemos um modelo de regressão Birnbaum-Saunders bivariado através do uso da distribuição Senh-Normal proposta por Rieck (1989). Este modelo de regressão pode ser utilizado para analisar logaritmos de tempos de vida de duas unidades correlacionadas, e gera marginais correspondentes aos modelos de regressão Birnbaum-Saunders univariados. Apresentamos um estudo de inferência e análise de diagnóstico para modelo de regressão Birnbaum-Saunders bivariado proposto. Em primeiro lugar, apresentamos os estimadores obtidos através do método dos momentos e de máxima verossimilhança, e a matriz de informação observada de Fisher. Além disso, discutimos testes de hipóteses com base na normalidade assintótica dos estimadores de máxima verossimilhança. Em segundo lugar, desenvolvemos um método de diagnóstico para o modelo de regressão Birnbaum- Saunders bivariado baseado na metodologia de Cook (1986). Finalmente, apresentamos alguns resultados de estudos de simulações e aplicações em dados reais
Abstract: The Birnbaum-Saunders regression model of Rieck and Nedelman (1991) has been extensively discussed by various authors with application in survival and reliability studies. In this work a bivariate Birnbaum-Saunders regression model is developed through the use of Sinh-Normal distribution proposed by Rieck (1989). This bivariate regression model can be used to analyze correlated log-time of two units, it bivariate regression model has its marginal as the Birnbaum- Saunders regression model. For the bivariate Birnbaum-Saunders regression model is discussed some of its properties, in the moment estimation, the maximum likelihood estimation and the observed Fisher information matrix. Hypothesis testing is performed by using the asymptotic normality of the maximum-likelihood estimators. Influence diagnostic methods are developed for this model based on the Cook¿s(1986) approach. Finally, the results of a simulation study as well as an application to a real data set are presented
Mestrado
Estatistica
Mestra em Estatística
Zhao, Yanchun. "Comparison of Proposed K Sample Tests with Dietz's Test for Nondecreasing Ordered Alternatives for Bivariate Normal Data". Thesis, North Dakota State University, 2011. https://hdl.handle.net/10365/28836.
Texto completoLinder, Richard Scott. "Impact of censoring on sample variances and regression coefficient in a bivariate normal model /". The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu148795190795651.
Texto completoMoodie, Felicity Zoe. "A new framework for nonparametric estimation of the bivariate survivor function /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9535.
Texto completoLee, Sukhoon. "Inference for a bivariate survival function induced through the environment /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267024997374.
Texto completoBlatchford, Patrick Judson. "Monitoring bivariate endpoints in group sequential clinical trials /". Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.
Buscar texto completoTypescript. Includes bibliographical references (leaves 104-106). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Ramos, Quispe Luz Marina 1985. "Uma extensão da distribuição Birnbaum-Saunders baseada na distribuição gaussiana inversa". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307087.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T16:25:27Z (GMT). No. of bitstreams: 1 RamosQuispe_LuzMarina_M.pdf: 6411257 bytes, checksum: 6e1e798cf8f6d7586fe5d9a057492a77 (MD5) Previous issue date: 2015
Resumo: Vários trabalhos têm sido feitos sobre a distribuição Birnbaum-Saunders (BS) univariada e suas extensões. A distribuição bivariada Birnbaum-Saunders (BS) foi apresentada apenas recentemente por Kundu et al. (2010) e algumas extensões já foram discutidas por Vilca et al. (2014) e Kundu et al. (2013). Eles propuseram uma distribuição BS bivariada com estrutura de dependência e estabeleceram várias propriedades atraentes. Este trabalho fornece extensões, univariada e bivariada, da distribuição BS. Estas extensões são baseadas na distribuição Gaussiana Inversa (IG) que é usada como uma distribuição de mistura no contexto de misturas de escala normal. As distribuições resultantes são distribuições absolutamente contínuas e muitas propriedades da distribuição BS são preservadas. Sob caso bivariado, as marginais e condicionais são do tipo Birnbaum-Saunders univariada. Para a obtenção da estimativa de máxima verossimilhança (EMV) é desenvolvido um algoritmo EM. Ilustramos os resultados obtidos com dados reais e simulados
Abstract: Several works have been done on the univariate Birnbaum-Saunders (BS) distribution and its extensions. The bivariate Birnbaum-Saunders (BS) distribution was presented only recently by Kundu et al. (2010) and some extensions have already been discussed by Vilca et al. (2014) and Kundu et al. (2013). They proposed a bivariate BS distribution with dependence structure and established several attractive properties. This work provides extensions, univariate and bivariate, of the BS distribution. These extensions are based on the Inverse Gaussian (IG) distribution that is used as a mixing distribution in the context of scale mixtures of normal. The resulting distributions are absolutely continuous distributions and many properties of the BS distribution are preserved. Under bivariate case, the marginals and conditionals are of type univariate Birnbaum-Saunders. For obtaining the maximum likelihood estimates (MLE) of the model parameters is developed an algorithm EM. We illustrate the obtained results with real and simulated dataset
Mestrado
Estatistica
Mestra em Estatística
Lally, Kristine. "Assessing Relationships between Psychological and Biological Markers in Coronary Heart Disease Patients using Bivariate Linear Mixed Models". Thesis, Uppsala universitet, Statistiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326015.
Texto completoBeversdorf, Louanne Margaret. "Tests for Correlation on Bivariate Nonnormal Distributions". UNF Digital Commons, 2008. http://digitalcommons.unf.edu/etd/284.
Texto completoStewart, Jaimee E. "A Comparison of Methods for Generating Bivariate Non-normally Distributed Random Variables". UNF Digital Commons, 2009. http://digitalcommons.unf.edu/etd/235.
Texto completoCOLUMBU, SILVIA. "Parametric modeling of dependence of bivariate quantile regression residuals' signs". Doctoral thesis, Università degli Studi di Cagliari, 2015. http://hdl.handle.net/11584/266587.
Texto completoStrugnell, James Paul. "Paintings by numbers : applications of bivariate correlation and descriptive statistics to Russian avant-garde artwork". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10722.
Texto completoJiang, Fan. "Application of a Bivariate Probit Model to Investigate the Intended Evacuation from Hurricane". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/883.
Texto completoKadel, Rajendra. "A Latent Mixture Approach to Modeling Zero-Inflated Bivariate Ordinal Data". Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4701.
Texto completoLi, Han. "Statistical Modeling and Analysis of Bivariate Spatial-Temporal Data with the Application to Stream Temperature Study". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/70862.
Texto completoPh. D.
Pi, Lira. "Fisher Information in Censored Samples from Univariate and Bivariate Populations and Their Applications". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354851703.
Texto completoZhou, Yahong. "Estimation of transformation models, generalized bivariate probit models, and box-cox partially linear models : three essays in microeconomics /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ECON%202005%20ZHOU.
Texto completoOrjuela, Maria del Pilar. "A Study on the Correlation of Bivariate And Trivariate Normal Models". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/976.
Texto completoBarker, Jolene. "APPLICATIONS OF THE BIVARIATE GAMMA DISTRIBUTION IN NUTRITIONAL EPIDEMIOLOGY AND MEDICAL PHYSICS". VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1623.
Texto completoLi, Mengying. "New Bivariate Lifetime Distributions Based on Bath-Tub Shaped Failure Rate". FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1583.
Texto completoProkosch, Jorinde. "Bivariate Bayesian Model Averaging and Ensemble Model Output Statistics : With a Case Study of Ensemble Temperature Forecasts in Trondheim". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23050.
Texto completoKnoebel, Bruce R. "An investigation of a bivariate distribution approach to modeling diameter distributions at two points in time". Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54310.
Texto completoPh. D.
Eren, Emrah. "Effect Of Estimation In Goodness-of-fit Tests". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611046/index.pdf.
Texto completoRettiganti, Mallikarjuna Rao. "Statistical Models for Count Data from Multiple Sclerosis Clinical Trials and their Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291180207.
Texto completoYu, Li. "Tau-Path Test - A Nonparametric Test For Testing Unspecified Subpopulation Monotone Association". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1255657068.
Texto completoLi, Wei. "Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates". Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305870.
Texto completoBelu, Alexandru C. "Multivariate Measures of Dependence for Random Variables and Levy Processes". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333396376.
Texto completoLu, Shihai. "Novel Step-Down Multiple Testing Procedures Under Dependence". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1416594298.
Texto completoDi, Credico Gioia. "Some developments in semiparametric and cross-classified multilevel models". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424946.
Texto completoIl nostro lavoro si è sviluppato a partire da un problema epidemiologico reale. L’effetto carcinogenico del fumo di sigaretta sui tumori testa-collo è stato ampiamente studiato in letteratura evidenziando una relazione dose-risposta non lineare. Recentemente, l’utilizzo di spline lineari di regressione nell’ambito di modelli semiparametrici, ha permesso un miglioramento nella valutazione dell’associazione tra fumo e tumori testa-collo. Il nostro lavoro si concentra sullo sviluppo di una metodologia capace di migliorare la stima della suddetta relazione sotto diversi aspetti. In particolare, l'approssimazione della funzione spline, rappresentata attraverso basi lineari troncate, è stata affinata affrontando il problema di stima di due quantità chiave per sua la definizione: il numero e la posizione dei nodi. La metodologia proposta si serve di un approccio Bayesiano. Successivamente ci siamo concentrati sullo sviluppo di una metodologia streamline applicabile a modelli lineari generalizzati per dati con struttura cross-classified. In particolare, gli step necessari al calcolo della matrice di covarianza vengono ottimizzati rispetto ad uno dei due effetti random permettendo un guadagno computazionale sia in termini di tempo che di utilizzo della memoria. Gli algoritmi proposti vengono applicati nell’ambito dei metodi variazionali inferenziali nel dettaglio al mean field variational Bayes.
Saint, Pierre Aude. "Méthodes d'analyse génétique de traits quantitatifs corrélés : application à l'étude de la densité minérale osseuse". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00633981.
Texto completoTognaccini, Sofia. "Geomorfologia applicata all'individuazione dello stato di attività dei movimenti gravitativi e analisi di suscettibilità da frana in diversi contesti geologico-strutturali". Doctoral thesis, 2019. http://hdl.handle.net/2158/1198143.
Texto completoHUSEMANN, JOYCE ANN STEVENS. "HISTOGRAM ESTIMATORS OF BIVARIATE DENSITIES (MULTIVARIATE, STATISTICS)". Thesis, 1986. http://hdl.handle.net/1911/15984.
Texto completoHua, Wen-Yu y 花文妤. "Statistical Inference for Bivariate Survival Data Based on". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/85460855612746920449.
Texto completo國立交通大學
統計學研究所
95
The thesis considers semi-parametric inference based on Copula models for bivariate survival data subject to right censoring. There exist several semi-parametric inference approaches to estimating the association parameter. We examine and compare three approaches developed for homogeneous data in absence of covariates. Then we extend these methods to a regression setting that accounts for marginal heterogeneity explained by the covariates. Finite-sample performances are examined by simulations.
Ghebremichael, Musie S. "Nonparametric estimation of bivariate mean residual life function". Thesis, 2005. http://hdl.handle.net/1911/18764.
Texto completoChandra, Krishnendu. "Survival Analysis using Bivariate Archimedean Copulas". Thesis, 2015. https://doi.org/10.7916/D80Z72F0.
Texto completoChiu, Chuan-Hung y 邱全宏. "A Family of Bivariate Distributions With Some Applications to Statistical Inferences". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/10145438551162546696.
Texto completo淡江大學
管理科學研究所碩士班
93
In chapter 1, we have proposed a new family of bivariate distributions, and also some special distributions such as bivariate exponential, bivariate Weibull etc.. Some comparisons with known results are also made. A real data set is illustrated in which some parameters are estimated by moment method. In chapter 2, we consider an error-in-variables regression model for random fatigue-limit problem. Some estimates for the related parameters are also derived. A real data set is also illustrated by the proposed method and some comparisons are also made with known results. Some simulation study is also carried out.
Greenberg, Simon L. "Bivariate goodness-of-fit tests based on Kolmogorov-Smirnov type statistics". Thesis, 2008. http://hdl.handle.net/10210/437.
Texto completoHsu, Hsiang-Ling y 許湘伶. "Optimal designs for statistical inferences in nonlinear models with bivariate response variables". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/10736549502397202508.
Texto completo國立中山大學
應用數學系研究所
99
Bivariate or multivariate correlated data may be collected on a sample of unit in many applications. When the experimenters concern about the failure times of two related subjects for example paired organs or two chronic diseases, the bivariate binary data is often acquired. This type of data consists of a observation point x and indicators which represent whether the failure times happened before or after the observation point. In this work, the observed bivariate data can be written with the following form {x, δ1=I(X1≤ x), δ2=I(X2≤ x)}.The corresponding optimal design problems for parameter estimation under this type of bivariate data are discussed. For this kind of the multivariate responses with explanatory variables, their marginal distributions may be from different distributions. Copula model is a way to formulate the relationship of these responses, and the association between pairs of responses. Copula models for bivariate binary data are considered useful in practice due to its flexibility. In this dissertation for bivariate binary data, the marginal functions are assumed from exponential or Weibull distributions and two assumptions, independent or correlated, about the joint function between variables are considered. When the bivariate binary data is assumed correlated, the Clayton copula model is used as the joint cumulative distribution function. There are few works addressed the optimal design problems for bivariate binary data with copula models. The D-optimal designs aim at minimizing the volume of the confidence ellipsoid for estimating unknown parameters including the association parameter in bivariate copula models. They are used to determine the best observation points. Moreover, the Ds-optimal designs are mainly used for estimation of the important association parameter in Clayton model. The D- and Ds-optimal designs for the above copula model are found through the general equivalence theorem with numerical algorithm. Under different model assumptions, it is observed that the number of support points for D-optimal designs is at most as the number of model parameters for the numerical results. When the difference between the marginal distributions and the association are significant, the association becomes an influential factor which makes the number of supports gets larger. The performances of estimation based on optimal designs are reasonably well by simulation studies. In survival experiments, the experimenter customarily takes trials at some specific points such as the position of the 25, 50 and 75 percentile of distributions. Hence, we consider the design efficiencies when the design points for trials are at three or four particular percentiles. Although it is common in practice to take trials at several quantile positions, the allocations of the proportion of sample size also have great influence on the experimental results. To use a locally optimal design in practice, the prior information for models or parameters are needed. In case there is not enough prior knowledge about the models or parameters, it would be more flexible to use sequential experiments to obtain information in several stages. Hence with robustness consideration, a sequential procedure is proposed by combining D- and Ds-optimal designs under independent or correlated distribution in different stages of the experiment. The simulation results based on the sequential procedure are compared with those by the one step procedures. When the optimal designs obtained from an incorrect prior parameter values or distributions, those results may have poor efficiencies. The sample mean of estimators and corresponding optimal designs obtained from sequential procedure are close to the true values and the corresponding efficiencies are close to 1. Huster (1989) analyzed the corresponding modeling problems for the paired survival data and applied to the Diabetic Retinopathy Study. Huster (1989) considered the exponential and Weibull distributions as possible marginal distributions and the Clayton model as the joint function for the Diabetic Retinopathy data. This data was conducted by the National Eye Institute to assess the effectiveness of laser photocoagulation in delaying the onset of blindness in patients with diabetic retinopathy. This study can be viewed as a prior experiment and provide the experimenter some useful guidelines for collecting data in future studies. As an application with Diabetic Retinopathy Study, we develop optimal designs to collect suitable data and information for estimating the unknown model parameters. In the second part of this work, the optimal design problems for parameter estimations are considered for the type of proportional data. The nonlinear model, based on Jorgensen (1997) and named the dispersion model, provides a flexible class of non-normal distributions and is considered in this research. It can be applied in binary or count responses, as well as proportional outcomes. For continuous proportional data where responses are confined within the interval (0,1), the simplex dispersion model is considered here. D-optimal designs obtained through the corresponding equivalence theorem and the numerical results are presented. In the development of classical optimal design theory, weighted polynomial regression models with variance functions which depend on the explanatory variable have played an important role. The problem of constructing locally D-optimal designs for simplex dispersion model can be viewed as a weighted polynomial regression model with specific variance function. Due to the complex form of the weight function in the information matrix is considered as a rational function, an approximation of the weight function and the corresponding optimal designs are obtained with different parameters. These optimal designs are compared with those using the original weight function.
"Multiple comparison procedures for a latent variable model with bivariate ordered categorical responses". 2012. http://library.cuhk.edu.hk/record=b5549561.
Texto completo潛變量模型已經被應用于對具有一維有序分類觀測數據的含有對照組的多重比較中。這種方法可以很好地應用于臨床研究中對含有對照組的不同治療方法的效用比較問題。在本論文的第一部份中,我們致力於把這種思想推廣到成對多重比較,成對多重比較是臨床研究中另一個很重要的課題。我們通過隨機模擬來對不同的方法在控制整體第一類錯誤和功效的優勢進行評估。在本論文的第二部份,我們主要研究具有二維有序分類響應變量的多重比較過程。在這些過程中,我們把二維有序分類數據看成是某個潛二維變量的一種表現。非參數方法也經常被應用於做兩個處理的比較問題。然而在本文中,我們對非參數方法的劣勢進行了說明。處理具有二維有序分類響應變量的含有對照組的多重比較問題是本論文的研究重點。基於潛變量模型的方法,我們給出了含有對照組的多重比較的若干檢驗過程,包括單步檢驗過程和逐步檢驗過程。在論文的第三部份,我們對具有一維有序分類數據的含有對照組的多重比較過程的功效和樣本量的確定問題進行了討論。基於Lu, Poon and Cheung (2012) 建議的多重比較過程,我們得到了滿足一定功效的樣本量的確定方法,并通過實例進行了說明。
In many scientific studies, research data are frequently composed of ordered categorical observations. Numerous examples could easily be found in areas including medical and clinical studies, sociology and psychology. There are two popular approaches in analyzing ordered categorical data. One is to employ the non-parametric method based on the Wilcoxon-Mann-Whitney statistics. The other is to use the latent variable model that conceptualizes the responses as manifestations of some underlying continuous variables. In this project, we focus on the comparisons of different populations with either univariate or bivariate ordered categorical observations using a latent variable model. The study of power and sample size requirement for multiple testing with univariate ordered categorical data are also provided in this thesis.
For univariate ordered categorical observations, the latent variable model has been used to compare treatments with a control. The developed methods are useful for applications in clinical studies where one would like to compare the efficacy of different treatments with a given control/placebo. In this thesis, we seek to extend this idea to develop the useful procedures for pairwise multiple comparisons which are often important objectives of clinical trials. Extensive simulation studies regarding overall type I error rate and power are performed to evaluate the merits of different procedures.
The second part of this thesis is devoted to multiple comparison methods with bivariate ordered categorical responses under the assumption that the bivariate ordered categorical data are manifestations of an underlying bivariate normal distribution. To compare two population mean vectors, nonparametric procedures are also frequently being used, but as demonstrated in this thesis, these methods are inferior to testing procedures based on the latent variable model. Hence, by the adoption of the latent variable model, we develop procedures that can be used to conduct multiple comparisons with a control for bivariate categorical responses. Different multiple comparison mechanisms including single-step and stepwise procedures are explored. Numerical examples for illustrative purposes are also given.
For the last part of this thesis, we discuss power and sample size determination for multiple comparisons with control for univariate ordered categorical data. Based on the multiple testing procedures proposed by Lu, Poon and Cheung (2012), we derive the procedure to compute the required sample size that guarantee a pre-specified power level. Numerical examples are also given.
For the last part of this thesis, we discuss power and sample size determination for multiple comparisons with control for univariate ordered categorical data. Based on the multiple testing procedures proposed by Lu, Poon and Cheung (2012), we derive the procedure to compute the required sample size that guarantee a pre-specified power level. Numerical examples are also given.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Lin, Yueqiong.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 92-100).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Abstract --- p.i
Acknowledgement --- p.iv
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Overview --- p.1
Chapter 1.2 --- Outline of the thesis --- p.4
Chapter 2 --- Pairwise Comparisons with Ordered Categorical Responses --- p.6
Chapter 2.1 --- Introduction --- p.6
Chapter 2.2 --- Proportional odds model --- p.8
Chapter 2.3 --- Latent variable model --- p.11
Chapter 2.4 --- Pairwise comparisons --- p.15
Chapter 2.4.1 --- Single-step procedure and the computation of critical values . --- p.15
Chapter 2.4.2 --- Approximation of critical values --- p.16
Chapter 2.4.3 --- A single-step conservative testing procedure: the Bonferroni procedure --- p.18
Chapter 2.4.4 --- A step-wise testing procedure: Hochberg's step-up procedure . --- p.19
Chapter 2.5 --- Simulation: power comparison --- p.20
Chapter 2.6 --- Examples --- p.24
Chapter 2.7 --- Conclusion --- p.28
Chapter 3 --- Multiple comparison procedures for a latent variable model with bivariate ordered categorical responses --- p.29
Chapter 3.1 --- Introduction --- p.29
Chapter 3.2 --- Latent bivariate normal model --- p.31
Chapter 3.2.1 --- The model --- p.31
Chapter 3.2.2 --- Model specification --- p.33
Chapter 3.2.3 --- Test Statistics --- p.35
Chapter 3.2.4 --- Statistical inference --- p.35
Chapter 3.3 --- Nonparametric test --- p.37
Chapter 3.3.1 --- Test statistic --- p.39
Chapter 3.3.2 --- A Comparison between the latent variable model procedure and nonparametric tests --- p.42
Chapter 3.4 --- Multiple comparisons of several treatments with a control based on the latent variable model --- p.47
Chapter 3.5 --- Simulation --- p.51
Chapter 3.6 --- Examples --- p.56
Chapter 3.7 --- Conclusion --- p.59
Chapter 4 --- Sample size determination for multiple comparisons with ordered univariate categorical data --- p.62
Chapter 4.1 --- Introduction --- p.62
Chapter 4.2 --- Multiple comparisons of treatments a control with ordered categorical responses --- p.64
Chapter 4.3 --- Power function --- p.67
Chapter 4.4 --- Sample size determination and tables --- p.75
Chapter 4.5 --- Examples --- p.85
Chapter 4.6 --- Conclusion --- p.88
Chapter 5 --- Further Research --- p.90
Bibliography --- p.92
Appendix
Chapter A --- Procedures to obtain the MLE of parameter θ₀ --- p.101
Chapter B --- Nonparametric test --- p.105
Chapter C --- Procedures to obtain the critical value for Dunnett's single-step procedure --- p.109
Chapter D --- Procedures to obtain the critical value for Dunnett's single-step procedure with balanced homogeneous groups --- p.112
Okyere, Ebenezer. "Maximum Likelihood Analysis for Bivariate Exponential Distributions". Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-B395-F.
Texto completo