Literatura académica sobre el tema "Stationary micropolar fluids equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Stationary micropolar fluids equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Stationary micropolar fluids equations"
Duarte-Leiva, Cristian, Sebastián Lorca y Exequiel Mallea-Zepeda. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions". Symmetry 13, n.º 8 (26 de julio de 2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Texto completoKocić, Miloš, Živojin Stamenković, Jelena Petrović y Jasmina Bogdanović-Jovanović. "MHD micropolar fluid flow in porous media". Advances in Mechanical Engineering 15, n.º 6 (junio de 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Texto completoEldabe, N. T. y M. Y. Abou-Zeid. "The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer". Mathematical Problems in Engineering 2010 (2010): 1–40. http://dx.doi.org/10.1155/2010/898062.
Texto completoWENG, HUEI CHU, CHA'O-KUANG CHEN y MIN-HSING CHANG. "Stability of micropolar fluid flow between concentric rotating cylinders". Journal of Fluid Mechanics 631 (17 de julio de 2009): 343–62. http://dx.doi.org/10.1017/s0022112009007150.
Texto completoXing, Xin y Demin Liu. "Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations". Entropy 24, n.º 5 (29 de abril de 2022): 628. http://dx.doi.org/10.3390/e24050628.
Texto completoSalemovic, Dusko, Aleksandar Dedic y Bosko Jovanovic. "Micropolar fluid between two coaxial cylinders (numerical approach)". Theoretical and Applied Mechanics 48, n.º 2 (2021): 159–69. http://dx.doi.org/10.2298/tam210823012s.
Texto completoBurmasheva, N. V. y E. Yu Prosviryakov. "Exact solutions to the NAVIER–STOKES equations for unidirectional flows of micropolar fluids in a mass force field". Diagnostics, Resource and Mechanics of materials and structures, n.º 3 (junio de 2024): 41–63. http://dx.doi.org/10.17804/2410-9908.2024.3.041-063.
Texto completoArnaud, M. M., G. M. de Araùjo, M. M. Freitas y E. F. L. Lucena. "ON A SYSTEM OF EQUATIONS OF A NON-NEWTONIAN MICROPOLAR FLUID IN THE STATIONARY FORM". Far East Journal of Applied Mathematics 97, n.º 4 (2 de diciembre de 2017): 125–42. http://dx.doi.org/10.17654/am097040125.
Texto completoChen, James, James D. Lee y Chunlei Liang. "Constitutive equations of Micropolar electromagnetic fluids". Journal of Non-Newtonian Fluid Mechanics 166, n.º 14-15 (agosto de 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Texto completoIDO, Yasushi. "Basic Equations of Micropolar Magnetic Fluids". Transactions of the Japan Society of Mechanical Engineers Series B 70, n.º 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Texto completoTesis sobre el tema "Stationary micropolar fluids equations"
Llerena, Montenegro Henry David. "Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Texto completoThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Gumgum, Sevin. "The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611605/index.pdf.
Texto completoCapítulos de libros sobre el tema "Stationary micropolar fluids equations"
Łukaszewicz, Grzegorz. "Stationary Problems". En Micropolar Fluids, 59–110. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0641-5_3.
Texto completoShklyaev, Sergey y Alexander Nepomnyashchy. "Convection in Binary Liquids: Amplitude Equations for Stationary and Oscillatory Patterns". En Longwave Instabilities and Patterns in Fluids, 125–208. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7590-7_4.
Texto completoKhapalov, Alexander. "Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations". En Bio-Mimetic Swimmers in Incompressible Fluids, 71–89. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-85285-6_7.
Texto completoMerkin, John H., Ioan Pop, Yian Yian Lok y Teodor Grosan. "Basic equations and mathematical methods". En Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, 1–21. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821188-5.00002-3.
Texto completoConca, C., R. Gormaz, E. Ortega y M. Rojas. "Existence and uniqueness of a strong solution for nonhomogeneous micropolar fluids". En Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 213–41. Elsevier, 2002. http://dx.doi.org/10.1016/s0168-2024(02)80012-1.
Texto completo"ON THE EXISTENCE OF SOLUTIONS FOR NON-STATIONARY SECOND-GRADE FLUIDS". En Navier-Stokes Equations and Related Nonlinear Problems, 15–30. De Gruyter, 1998. http://dx.doi.org/10.1515/9783112319291-003.
Texto completoChimowitz, Eldred H. "Supercritical Adsorption". En Introduction to Critical Phenomena in Fluids. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195119305.003.0008.
Texto completoGhergu, Marius y Vicenţiu D. Rădulescu. "Sublinear Perturbations of Singular Elliptic Problems". En Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, 93–124. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195334722.003.0004.
Texto completo"Chapter 2 Correctness “IN THE WHOLE” of the Boundary Problems for Equations of One-Dimensional Non-Stationary Motion of a Viscous Gas". En Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, 39–100. Elsevier, 1990. http://dx.doi.org/10.1016/s0168-2024(08)70071-7.
Texto completoActas de conferencias sobre el tema "Stationary micropolar fluids equations"
Lasinger, Katrin, Christoph Vogel y Konrad Schindler. "Volumetric Flow Estimation for Incompressible Fluids Using the Stationary Stokes Equations". En 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.280.
Texto completoNajafi, A., F. Daneshmand y S. R. Mohebpour. "Analysis of Vibrating Micropolar Plate in Contact With a Fluid". En ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31036.
Texto completoNaumann, Joachim. "On weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids: defect measure and energy equality". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-19.
Texto completoMatousˇek, Va´clav. "Pressure Drop in Slurry Pipe With Stationary Deposit". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37322.
Texto completoShan, Hua, Sung-Eun Kim y Bong Rhee. "A Fully Coupled Flow and 6-DOF Motion Solver in Multiple Reference Frames". En ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-3210.
Texto completoMatousˇek, Va´clav y Jan Krupicˇka. "Liquid-Solid Flows Above Deposit in Pipe: Prediction of Hydraulic Gradient and Deposit Thickness". En ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78125.
Texto completoFleig, Oliver y Chuichi Arakawa. "Aeroacoustics Simulation Around a Wind Turbine Blade Using Compressible LES and Linearized Euler Equations". En ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45368.
Texto completoPérez, José, Rafael Baez, Jose Terrazas, Arturo Rodríguez, Daniel Villanueva, Olac Fuentes, Vinod Kumar, Brandon Paez y Abdiel Cruz. "Physics-Informed Long-Short Term Memory Neural Network Performance on Holloman High-Speed Test Track Sled Study". En ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86953.
Texto completoMukherjee, Abhijit y Satish G. Kandlikar. "Numerical Study of an Evaporating Meniscus on a Moving Heated Surface". En ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56678.
Texto completoMishra, Srishti, Mukul Tomar, Adeel Ahmad, Satvik Jain y Naveen Kumar. "Numerical Study of Forced Convection in Different Fluids From Stationary Heated Cylinders in a Square Enclosure". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87032.
Texto completo