Artículos de revistas sobre el tema "States representation learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "States representation learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Konidaris, George, Leslie Pack Kaelbling y Tomas Lozano-Perez. "From Skills to Symbols: Learning Symbolic Representations for Abstract High-Level Planning". Journal of Artificial Intelligence Research 61 (31 de enero de 2018): 215–89. http://dx.doi.org/10.1613/jair.5575.
Texto completoSCARPETTA, SILVIA, ZHAOPING LI y JOHN HERTZ. "LEARNING IN AN OSCILLATORY CORTICAL MODEL". Fractals 11, supp01 (febrero de 2003): 291–300. http://dx.doi.org/10.1142/s0218348x03001951.
Texto completoZhu, Zheng-Mao, Shengyi Jiang, Yu-Ren Liu, Yang Yu y Kun Zhang. "Invariant Action Effect Model for Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 8 (28 de junio de 2022): 9260–68. http://dx.doi.org/10.1609/aaai.v36i8.20913.
Texto completoYue, Yang, Bingyi Kang, Zhongwen Xu, Gao Huang y Shuicheng Yan. "Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junio de 2023): 11069–77. http://dx.doi.org/10.1609/aaai.v37i9.26311.
Texto completoChornozhuk, S. "The New Geometric “State-Action” Space Representation for Q-Learning Algorithm for Protein Structure Folding Problem". Cybernetics and Computer Technologies, n.º 3 (27 de octubre de 2020): 59–73. http://dx.doi.org/10.34229/2707-451x.20.3.6.
Texto completoLamanna, Leonardo, Alfonso Emilio Gerevini, Alessandro Saetti, Luciano Serafini y Paolo Traverso. "On-line Learning of Planning Domains from Sensor Data in PAL: Scaling up to Large State Spaces". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 11862–69. http://dx.doi.org/10.1609/aaai.v35i13.17409.
Texto completoSapena, Oscar, Eva Onaindia y Eliseo Marzal. "Automated feature extraction for planning state representation". Inteligencia Artificial 27, n.º 74 (10 de octubre de 2024): 227–42. http://dx.doi.org/10.4114/intartif.vol27iss74pp227-242.
Texto completoO’Donnell, Ryan y John Wright. "Learning and testing quantum states via probabilistic combinatorics and representation theory". Current Developments in Mathematics 2021, n.º 1 (2021): 43–94. http://dx.doi.org/10.4310/cdm.2021.v2021.n1.a2.
Texto completoZhang, Hengyuan, Suyao Zhao, Ruiheng Liu, Wenlong Wang, Yixin Hong y Runjiu Hu. "Automatic Traffic Anomaly Detection on the Road Network with Spatial-Temporal Graph Neural Network Representation Learning". Wireless Communications and Mobile Computing 2022 (20 de junio de 2022): 1–12. http://dx.doi.org/10.1155/2022/4222827.
Texto completoDayan, Peter. "Improving Generalization for Temporal Difference Learning: The Successor Representation". Neural Computation 5, n.º 4 (julio de 1993): 613–24. http://dx.doi.org/10.1162/neco.1993.5.4.613.
Texto completoGershman, Samuel J., Christopher D. Moore, Michael T. Todd, Kenneth A. Norman y Per B. Sederberg. "The Successor Representation and Temporal Context". Neural Computation 24, n.º 6 (junio de 2012): 1553–68. http://dx.doi.org/10.1162/neco_a_00282.
Texto completoM. Mounika, L. Sahithi, K. Prasanna Lakshmi, K. Praveenya y N. Ashok Kumar. "Quantum driven deep learning for enhanced diabetic retinopathy detection". World Journal of Advanced Research and Reviews 22, n.º 1 (30 de abril de 2024): 055–60. http://dx.doi.org/10.30574/wjarr.2024.22.1.0964.
Texto completoRobins, Anthony V. "MULTIPLE REPRESENTATIONS IN CONNECTIONIST SYSTEMS". International Journal of Neural Systems 02, n.º 04 (enero de 1991): 345–62. http://dx.doi.org/10.1142/s0129065791000327.
Texto completoLi, Xinlin, Changhe Fan y Chengyue Su. "Self-Supervised Learning for Speech-Based Detection of Depressive States". Frontiers in Computing and Intelligent Systems 11, n.º 2 (27 de febrero de 2025): 106–9. https://doi.org/10.54097/1cspmj65.
Texto completoWu, Bo, Yan Peng Feng y Hong Yan Zheng. "A Model-Based Factored Bayesian Reinforcement Learning Approach". Applied Mechanics and Materials 513-517 (febrero de 2014): 1092–95. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1092.
Texto completoAlvi, Maira, Tim French, Philip Keymer y Rachel Cardell-Oliver. "Automated State Estimation for Summarizing the Dynamics of Complex Urban Systems Using Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 21 (24 de marzo de 2024): 23020–26. http://dx.doi.org/10.1609/aaai.v38i21.30344.
Texto completoYamashita, Kodai y Tomoki Hamagami. "Reinforcement Learning for POMDP Environments Using State Representation with Reservoir Computing". Journal of Advanced Computational Intelligence and Intelligent Informatics 26, n.º 4 (20 de julio de 2022): 562–69. http://dx.doi.org/10.20965/jaciii.2022.p0562.
Texto completoYan, Yan, Xu-Cheng Yin, Sujian Li, Mingyuan Yang y Hong-Wei Hao. "Learning Document Semantic Representation with Hybrid Deep Belief Network". Computational Intelligence and Neuroscience 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/650527.
Texto completoZeng, Zheng, Rodney M. Goodman y Padhraic Smyth. "Learning Finite State Machines With Self-Clustering Recurrent Networks". Neural Computation 5, n.º 6 (noviembre de 1993): 976–90. http://dx.doi.org/10.1162/neco.1993.5.6.976.
Texto completoBrantley, Kianté, Soroush Mehri y Geoff J. Gordon. "Successor Feature Sets: Generalizing Successor Representations Across Policies". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 11774–81. http://dx.doi.org/10.1609/aaai.v35i13.17399.
Texto completoSupianto, Ahmad Afif, Satrio Agung Wicaksono, Fitra A. Bachtiar, Admaja Dwi Herlambang, Yusuke Hayashi y Tsukasa Hirashima. "Web-based Application for Visual Representation of Learners' Problem-Posing Learning Pattern". Journal of Information Technology and Computer Science 4, n.º 1 (27 de junio de 2019): 103. http://dx.doi.org/10.25126/jitecs.20194172.
Texto completoJanowicz, Maciej y Andrzej Zembrzuski. "Guessing quantum states from images of their zeros in the complex plane". Machine Graphics and Vision 32, n.º 3/4 (18 de diciembre de 2023): 147–59. http://dx.doi.org/10.22630/mgv.2022.31.3.8.
Texto completoARENA, PAOLO, LUIGI FORTUNA, MATTIA FRASCA, DAVIDE LOMBARDO, LUCA PATANÈ y PAOLO CRUCITTI. "TURING PATTERNS IN RD-CNNs FOR THE EMERGENCE OF PERCEPTUAL STATES IN ROVING ROBOTS". International Journal of Bifurcation and Chaos 17, n.º 01 (enero de 2007): 107–27. http://dx.doi.org/10.1142/s0218127407017203.
Texto completoHadra, Mohammad y Iman Abdelrahman. "Automatic EEG-based Alertness Classification using Sparse Representation and Dictionary Learning". Journal of Biomedical Engineering and Medical Imaging 7, n.º 5 (8 de noviembre de 2020): 19–28. http://dx.doi.org/10.14738/jbemi.75.9264.
Texto completoDe Giacomo, Giuseppe, Marco Favorito, Luca Iocchi y Fabio Patrizi. "Imitation Learning over Heterogeneous Agents with Restraining Bolts". Proceedings of the International Conference on Automated Planning and Scheduling 30 (1 de junio de 2020): 517–21. http://dx.doi.org/10.1609/icaps.v30i1.6747.
Texto completoBenjamin, Ari S. y Konrad P. Kording. "A role for cortical interneurons as adversarial discriminators". PLOS Computational Biology 19, n.º 9 (28 de septiembre de 2023): e1011484. http://dx.doi.org/10.1371/journal.pcbi.1011484.
Texto completoGao, Kaizhi, Tianyu Wang, Zhongjing Ma y Suli Zou. "Winnie: Task-Oriented Dialog System with Structure-Aware Contrastive Learning and Enhanced Policy Planning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 16 (24 de marzo de 2024): 18021–29. http://dx.doi.org/10.1609/aaai.v38i16.29758.
Texto completoMontero Quispe, Kevin G., Daniel M. S. Utyiama, Eulanda M. dos Santos, Horácio A. B. F. Oliveira y Eduardo J. P. Souto. "Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals". Sensors 22, n.º 23 (23 de noviembre de 2022): 9102. http://dx.doi.org/10.3390/s22239102.
Texto completoNiu, Yijie, Wu Deng, Xuesong Zhang, Yuchun Wang, Guoqing Wang, Yanjuan Wang y Pengpeng Zhi. "A Sparse Learning Method with Regularization Parameter as a Self-Adaptation Strategy for Rolling Bearing Fault Diagnosis". Electronics 12, n.º 20 (16 de octubre de 2023): 4282. http://dx.doi.org/10.3390/electronics12204282.
Texto completoCai, Yuanying, Chuheng Zhang, Wei Shen, Xuyun Zhang, Wenjie Ruan y Longbo Huang. "RePreM: Representation Pre-training with Masked Model for Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 6879–87. http://dx.doi.org/10.1609/aaai.v37i6.25842.
Texto completoBOXER, PAUL A. "LEARNING NAIVE PHYSICS BY VISUAL OBSERVATION: USING QUALITATIVE SPATIAL REPRESENTATIONS AND PROBABILISTIC REASONING". International Journal of Computational Intelligence and Applications 01, n.º 03 (septiembre de 2001): 273–85. http://dx.doi.org/10.1142/s146902680100024x.
Texto completoLanchantin, Jack, Sainbayar Sukhbaatar, Gabriel Synnaeve, Yuxuan Sun, Kavya Srinet y Arthur Szlam. "A Data Source for Reasoning Embodied Agents". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8438–46. http://dx.doi.org/10.1609/aaai.v37i7.26017.
Texto completoZhou, Hangbo, Gang Zhang y Yong-Wei Zhang. "Neural network representation and optimization of thermoelectric states of multiple interacting quantum dots". Physical Chemistry Chemical Physics 22, n.º 28 (2020): 16165–73. http://dx.doi.org/10.1039/d0cp02894k.
Texto completoYu, Jia, Huiling Peng, Guoqiang Wang y Nianfeng Shi. "A topical VAEGAN-IHMM approach for automatic story segmentation". Mathematical Biosciences and Engineering 21, n.º 7 (2024): 6608–30. http://dx.doi.org/10.3934/mbe.2024289.
Texto completoAnggraini, Nanda Ayu, Eka Fitria Ningsih, Choirudin Choirudin, Rani Darmayanti y Diyan Triyanto. "Application of the AIR learning model using song media to improve students’ mathematical representational ability". AMCA Journal of Science and Technology 2, n.º 1 (11 de noviembre de 2022): 28–33. http://dx.doi.org/10.51773/ajst.v2i1.264.
Texto completoHennig, Jay A., Sandra A. Romero Pinto, Takahiro Yamaguchi, Scott W. Linderman, Naoshige Uchida y Samuel J. Gershman. "Emergence of belief-like representations through reinforcement learning". PLOS Computational Biology 19, n.º 9 (11 de septiembre de 2023): e1011067. http://dx.doi.org/10.1371/journal.pcbi.1011067.
Texto completoFrancois-Lavet, Vincent, Guillaume Rabusseau, Joelle Pineau, Damien Ernst y Raphael Fonteneau. "On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability". Journal of Artificial Intelligence Research 65 (5 de mayo de 2019): 1–30. http://dx.doi.org/10.1613/jair.1.11478.
Texto completoLiao, Weijian, Zongzhang Zhang y Yang Yu. "Policy-Independent Behavioral Metric-Based Representation for Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8746–54. http://dx.doi.org/10.1609/aaai.v37i7.26052.
Texto completoCorli, Sebastiano, Lorenzo Moro, Davide E. Galli y Enrico Prati. "Casting Rubik’s Group into a Unitary Representation for Reinforcement Learning". Journal of Physics: Conference Series 2533, n.º 1 (1 de junio de 2023): 012006. http://dx.doi.org/10.1088/1742-6596/2533/1/012006.
Texto completoHirshorn, Elizabeth A., Yuanning Li, Michael J. Ward, R. Mark Richardson, Julie A. Fiez y Avniel Singh Ghuman. "Decoding and disrupting left midfusiform gyrus activity during word reading". Proceedings of the National Academy of Sciences 113, n.º 29 (20 de junio de 2016): 8162–67. http://dx.doi.org/10.1073/pnas.1604126113.
Texto completoCresswell, Stephen y Peter Gregory. "Generalised Domain Model Acquisition from Action Traces". Proceedings of the International Conference on Automated Planning and Scheduling 21 (22 de marzo de 2011): 42–49. http://dx.doi.org/10.1609/icaps.v21i1.13476.
Texto completoCharalambous, Panayiotis, Julien Pettre, Vassilis Vassiliades, Yiorgos Chrysanthou y Nuria Pelechano. "GREIL-Crowds: Crowd Simulation with Deep Reinforcement Learning and Examples". ACM Transactions on Graphics 42, n.º 4 (26 de julio de 2023): 1–15. http://dx.doi.org/10.1145/3592459.
Texto completoBARRETO, GUILHERME DE A. y ALUIZIO F. R. ARAÚJO. "Unsupervised Learning and Recall of Temporal Sequences: An Application to Robotics". International Journal of Neural Systems 09, n.º 03 (junio de 1999): 235–42. http://dx.doi.org/10.1142/s012906579900023x.
Texto completoZou, Eric, Erik Long y Erhai Zhao. "Learning a compass spin model with neural network quantum states". Journal of Physics: Condensed Matter 34, n.º 12 (7 de enero de 2022): 125802. http://dx.doi.org/10.1088/1361-648x/ac43ff.
Texto completoCASTELLANO, GIOVANNA, CIRO CASTIELLO, DANILO DELL'AGNELLO, ANNA MARIA FANELLI, CORRADO MENCAR y MARIA ALESSANDRA TORSELLO. "LEARNING FUZZY USER PROFILES FOR RESOURCE RECOMMENDATION". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18, n.º 04 (agosto de 2010): 389–410. http://dx.doi.org/10.1142/s0218488510006611.
Texto completoGuo, Chao y Rongrong Ren. "Learning and Problem Representation in Foreign Policy Decision-Making: China'S Decision to Enter the Korean War Revisited". Public Administration Quarterly 27, n.º 3 (septiembre de 2003): 274–310. http://dx.doi.org/10.1177/073491490302700302.
Texto completoTrevarthen, Colwyn y Kenneth J. Aitken. "Brain development, infant communication, and empathy disorders: Intrinsic factors in child mental health". Development and Psychopathology 6, n.º 4 (1994): 597–633. http://dx.doi.org/10.1017/s0954579400004703.
Texto completoWhitehead, Steven D. y Dana H. Ballard. "Active Perception and Reinforcement Learning". Neural Computation 2, n.º 4 (diciembre de 1990): 409–19. http://dx.doi.org/10.1162/neco.1990.2.4.409.
Texto completoTian, Yuan. "Music emotion representation based on non-negative matrix factorization algorithm and user label information". PeerJ Computer Science 9 (25 de septiembre de 2023): e1590. http://dx.doi.org/10.7717/peerj-cs.1590.
Texto completoFinn, Tobias Sebastian, Lucas Disson, Alban Farchi, Marc Bocquet y Charlotte Durand. "Representation learning with unconditional denoising diffusion models for dynamical systems". Nonlinear Processes in Geophysics 31, n.º 3 (19 de septiembre de 2024): 409–31. http://dx.doi.org/10.5194/npg-31-409-2024.
Texto completo