Literatura académica sobre el tema "Stability of hybrid systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Stability of hybrid systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Stability of hybrid systems"
LI, ZHENGGUO, CHEONG BOON SOH y XINHE XU. "Stability of hybrid dynamic systems". International Journal of Systems Science 28, n.º 8 (julio de 1997): 837–46. http://dx.doi.org/10.1080/00207729708929444.
Texto completoMartynyuk, A. A. "Practical stability of hybrid systems". Soviet Applied Mechanics 25, n.º 2 (febrero de 1989): 194–200. http://dx.doi.org/10.1007/bf00888136.
Texto completoBychkov, A. S. y M. G. Merkur’ev. "Stability of continuous hybrid systems". Cybernetics and Systems Analysis 43, n.º 2 (marzo de 2007): 261–65. http://dx.doi.org/10.1007/s10559-007-0045-7.
Texto completoLirong Huang, Xuerong Mao y Feiqi Deng. "Stability of Hybrid Stochastic Retarded Systems". IEEE Transactions on Circuits and Systems I: Regular Papers 55, n.º 11 (diciembre de 2008): 3413–20. http://dx.doi.org/10.1109/tcsi.2008.2001825.
Texto completoBiemond, J. J. Benjamin, Romain Postoyan, W. P. Maurice H. Heemels y Nathan van de Wouw. "Incremental Stability of Hybrid Dynamical Systems". IEEE Transactions on Automatic Control 63, n.º 12 (diciembre de 2018): 4094–109. http://dx.doi.org/10.1109/tac.2018.2830506.
Texto completoMinh, Vu Trieu. "Stability for switched dynamic hybrid systems". Mathematical and Computer Modelling 57, n.º 1-2 (enero de 2013): 78–83. http://dx.doi.org/10.1016/j.mcm.2011.05.055.
Texto completoMaria, G. A., C. Tang y J. Kim. "Hybrid transient stability analysis (power systems)". IEEE Transactions on Power Systems 5, n.º 2 (mayo de 1990): 384–93. http://dx.doi.org/10.1109/59.54544.
Texto completoHui Ye, A. N. Michel y Ling Hou. "Stability theory for hybrid dynamical systems". IEEE Transactions on Automatic Control 43, n.º 4 (abril de 1998): 461–74. http://dx.doi.org/10.1109/9.664149.
Texto completoSisodiya, Priyanka y Dr Anil Kumar Kori. "Review on Power Quality of Hybrid Renewable Energy System". International Journal for Research in Applied Science and Engineering Technology 10, n.º 7 (31 de julio de 2022): 1439–43. http://dx.doi.org/10.22214/ijraset.2022.44874.
Texto completoYang, Ying y Guopei Chen. "Finite Time Stability of Stochastic Hybrid Systems". Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/867189.
Texto completoTesis sobre el tema "Stability of hybrid systems"
Karalis, Paschalis. "Stability and stabilisation of switching and hybrid dissipative systems". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/stability-and-stabilisation-of-switching-and-hybrid-dissipative-systems(3e6ee880-e59a-49ed-a2f2-1612df85557f).html.
Texto completoDella, rossa Matteo. "Non smooth Lyapunov functions for stability analysis of hybrid systems". Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0004.
Texto completoModeling of many phenomena in nature escape the rather common frameworks of continuous-time and discrete-time models. In fact, for many systems encountered in practice, these two paradigms need to be intrinsically related and connected, in order to reach a satisfactory level of description in modeling the considered physical/engineering process.These systems are often referred to as hybrid systems, and various possible formalisms have appeared in the literature over the past years.The aim of this thesis is to analyze the stability of particular classes of hybrid systems, by providing Lyapunov-based sufficient conditions for (asymptotic) stability. In particular, we will focus on non-differentiable locally Lipschitz candidate Lyapunov functions. The first chapters of this manuscript can be considered as a general introduction of this topic and the related concepts from non-smooth analysis.This will allow us to study a class of piecewise smooth maps as candidate Lyapunov functions, with particular attention to the continuity properties of the constrained differential inclusion comprising the studied hybrid systems. We propose ``relaxed'' Lyapunov conditions which require to be checked only on a dense set and discuss connections to other classes of locally Lipschitz or piecewise regular functions.Relaxing the continuity assumptions, we then investigate the notion of generalized derivatives when considering functions obtained as emph{max-min} combinations of smooth functions. This structure turns out to be particularly fruitful when considering the stability problem for differential inclusions arising from regularization of emph{state-dependent switched systems}.When the studied switched systems are composed of emph{linear} sub-dynamics, we refine our results, in order to propose algorithmically verifiable conditions.We further explore the utility of set-valued derivatives in establishing input-to-state stability results, in the context of perturbed differential inclusions/switched systems, using locally Lipschitz candidate Lyapunov functions. These developments are then used in analyzing the stability problem for interconnections of differential inclusion, with an application in designing an observer-based controller for state-dependent switched systems
Alwan, Mohamad. "Stability of Hybrid Singularly Perturbed Systems with Time Delay". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2934.
Texto completoEzzine, Jelel. "On stabilization and control of hybrid systems". Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15626.
Texto completoNersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Texto completoAdimoolam, Santosh Arvind. "A Calculus of Complex Zonotopes for Invariance and Stability Verification of Hybrid Systems". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM027/document.
Texto completoComputing reachable sets is a de facto approach used in many formal verification methods for hybrid systems. But exact computation of the reachable set is an in- tractable problem for many kinds of hybrid systems, either due to undecidability or high computational complexity. Alternatively, quite a lot of research has been focused on using set representations that can be efficiently manipulated to com- pute sufficiently accurate over-approximation of the reachable set. Zonotopes are a useful set representation in reachability analysis because of their closure and low complexity for computing linear transformation and Minkowski sum operations. But for approximating the unbounded time reachable sets by positive invariants, zonotopes have the following drawback. The effectiveness of a set representation for computing a positive invariant depends on efficiently encoding the directions for convergence of the states to an equilibrium. In an affine hybrid system, some of the directions for convergence can be encoded by the complex valued eigen- vectors of the transformation matrices. But the zonotope representation can not exploit the complex eigenstructure of the transformation matrices because it only has real valued generators.Therefore, we extend real zonotopes to the complex valued domain in a way that can capture contraction along complex valued vectors. This yields a new set representation called complex zonotope. Geometrically, complex zonotopes repre- sent a wider class of sets that include some non-polytopic sets as well as polytopic zonotopes. They retain the merit of real zonotopes that we can efficiently perform linear transformation and Minkowski sum operations and compute the support function. Additionally, we show that they can capture contraction along complex valued eigenvectors. Furthermore, we develop computationally tractable approx- imations for inclusion-checking and intersection with half-spaces. Using these set operations on complex zonotopes, we develop convex programs to verify lin- ear invariance properties of discrete time affine hybrid systems and exponential stability of linear impulsive systems. Our experiments on some benchmark exam- ples demonstrate the efficiency of the verification techniques based on complex zonotopes
Xu, Honglei. "Stability and control of switched systems with impulsive effects". Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/415.
Texto completoSeyfried, Aaron W. "Stability of a Fuzzy Logic Based Piecewise Linear Hybrid System". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1370017300.
Texto completoHui, Qing. "Nonlinear dynamical systems and control for large-scale, hybrid, and network systems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texto completoCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Oehlerking, Jens [Verfasser] y Oliver [Akademischer Betreuer] Theel. "Decomposition of stability proofs for hybrid systems / Jens Oehlerking. Betreuer: Oliver Theel". Oldenburg : IBIT - Universitätsbibliothek, 2012. http://d-nb.info/1025114434/34.
Texto completoLibros sobre el tema "Stability of hybrid systems"
Goebel, Rafal. Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, N.J: Princeton University Press, 2012.
Buscar texto completoSchuring, J. Frequency response analysis of hybrid systems. Amsterdam: National Aerospace Laboratory, 1987.
Buscar texto completoGrossman, Robert L., Anil Nerode, Anders P. Ravn y Hans Rischel, eds. Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57318-6.
Texto completoHolcombe, W. M. L. Hybrid machines for hybrid systems. Sheffield: University of Sheffield, Department of Computer Science, 1995.
Buscar texto completoMacDonald, Paul N. Two-Hybrid Systems. New Jersey: Humana Press, 2001. http://dx.doi.org/10.1385/1592592104.
Texto completoAbraham, Ajith, Thomas Hanne, Oscar Castillo, Niketa Gandhi, Tatiane Nogueira Rios y Tzung-Pei Hong, eds. Hybrid Intelligent Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5.
Texto completoLin, Hai y Panos J. Antsaklis. Hybrid Dynamical Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78731-8.
Texto completoHirayama, Yoshiro, Koji Ishibashi y Kae Nemoto, eds. Hybrid Quantum Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7.
Texto completoCapítulos de libros sobre el tema "Stability of hybrid systems"
Kourjanski, Mikhail y Pravin Varaiya. "Stability of hybrid systems". En Hybrid Systems III, 413–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020964.
Texto completoTrenn, Stephan. "Stability of Switched DAEs". En Hybrid Systems with Constraints, 57–83. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch3.
Texto completoPark, Hong Seong, Young Sin Kim, Wook Hyun Kwon y Sang Jeong Lee. "Model and stability of hybrid linear system". En Hybrid Systems III, 424–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020965.
Texto completoDoğruel, Murat y ümit özgüner. "Modeling and stability issues in hybrid systems". En Hybrid Systems II, 148–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60472-3_8.
Texto completoJi, Wang y He Weidong. "Formal specification of stability in hybrid control systems". En Hybrid Systems III, 294–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020954.
Texto completoYin, G. y Q. Zhang. "Stability of Nonlinear Hybrid Systems". En New Trends in Nonlinear Dynamics and Control and their Applications, 251–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_16.
Texto completoFiacchini, Mirko, Sophie Tarbouriech y Christophe Prieur. "Exponential Stability for Hybrid Systems with Saturations". En Hybrid Systems with Constraints, 179–212. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch7.
Texto completoBokes, Pavol y Abhyudai Singh. "Controlling Noisy Expression Through Auto Regulation of Burst Frequency and Protein Stability". En Hybrid Systems Biology, 80–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28042-0_6.
Texto completoAmes, Aaron D., Paulo Tabuada y Shankar Sastry. "On the Stability of Zeno Equilibria". En Hybrid Systems: Computation and Control, 34–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11730637_6.
Texto completoTeel, Andrew R. "Stability Theory for Hybrid Dynamical Systems". En Encyclopedia of Systems and Control, 1301–7. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_99.
Texto completoActas de conferencias sobre el tema "Stability of hybrid systems"
Zheng, Huannan, Wei Zhu y Ya Deng. "Stability of Nonlinear Systems via Hybrid Delayed Impulses". En 2024 43rd Chinese Control Conference (CCC), 329–34. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662032.
Texto completoLiu, Bin y David J. Hill. "Stability for hybrid event systems". En 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426599.
Texto completoMohrenschildt, M. V. "Hybrid systems: solutions, stability, control". En Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878990.
Texto completoHassan, Omran,. "Local Stability of Bilinear Systems with Asynchronous Sampling". En Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro y Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00004.
Texto completoChristian, Stoecker,. "Stability Analysis of Interconnected Event-Based Control Loops". En Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro y Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00010.
Texto completoDashkovskiy, Sergey y Ratthaprom Promkam. "Alternative stability conditions for hybrid systems". En 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760392.
Texto completoZhu, Liying y Yuzhen Wang. "Stability of Hybrid Dissipative Hamiltonian Systems". En 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280550.
Texto completoLoon,, van. "Stability Analysis of Networked Control Systems with Periodic Protocols and Uniform Quantizers". En Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro y Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00030.
Texto completoYong-Yan Fan, Jin-Hua Wang, Jing Zhang y Chong Wang. "Relative stability analysis of two hybrid systems". En 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359472.
Texto completoDashkovskiy, Sergey y Michael Kosmykov. "Stability of networks of hybrid ISS systems". En 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400628.
Texto completoInformes sobre el tema "Stability of hybrid systems"
Gao, Sicum, Soonho Kong y Edmund M. Clarke. Revisiting the Complexity of Stability of Continuous and Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, julio de 2014. http://dx.doi.org/10.21236/ada611548.
Texto completoTeel, Andrew R. y Joao P. Hespanha. A Robust Stability and Control Theory for Hybrid Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2006. http://dx.doi.org/10.21236/ada470821.
Texto completoGreenwood, Michael Scott, Sacit M. Cetiner y David W. Fugate. Nuclear Hybrid Energy System Model Stability Testing. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1354665.
Texto completoHassan, Saeed, AbdulKhaliq Alshadid, Ravinder Saini y Lujain Aldosari. Assessment of Mechanical Properties of Hybrid PVES Elastomeric Material in Comparison to its Parent Materials - A Systemic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, marzo de 2023. http://dx.doi.org/10.37766/inplasy2023.3.0043.
Texto completoGoel, Dr Divanshu y Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, febrero de 2023. http://dx.doi.org/10.36106/ijar/1505336.
Texto completoKerber, Steve, Daniel Madrzykowski, James Dalton y Robert Backstrom. Improving Fire Safety by Understanding the Fire Performance of Engineered Floor Systems and Providing the Fire Service with Information for Tactical Decision Making. UL Firefighter Safety Research Institute, marzo de 2012. http://dx.doi.org/10.54206/102376/zcoq6988.
Texto completoHenzinger, Thomas A. y Shankar Sastry. Hybrid Systems: Computation and Control. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1999. http://dx.doi.org/10.21236/ada361329.
Texto completoLafferriere, G., G. Pappas y S. Sastry. Hybrid Systems with Finite Bisimulations. Fort Belvoir, VA: Defense Technical Information Center, abril de 1998. http://dx.doi.org/10.21236/ada358308.
Texto completoHeitmeyer, Constance. Requirements Specifications for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, enero de 1996. http://dx.doi.org/10.21236/ada463944.
Texto completoDahleh, Munther A. y Alexandre Megretski. New Tools for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2007. http://dx.doi.org/10.21236/ada467021.
Texto completo