Artículos de revistas sobre el tema "Spin currents"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Spin currents.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Spin currents".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Sonin, E. B. "Spin currents and spin superfluidity". Advances in Physics 59, n.º 3 (15 de abril de 2010): 181–255. http://dx.doi.org/10.1080/00018731003739943.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Žutić, Igor y Hanan Dery. "Taming spin currents". Nature Materials 10, n.º 9 (23 de agosto de 2011): 647–48. http://dx.doi.org/10.1038/nmat3097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hoffmann, Axel. "Pure spin-currents". physica status solidi (c) 4, n.º 11 (noviembre de 2007): 4236–41. http://dx.doi.org/10.1002/pssc.200775942.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pareek, T. P. "Unified quaternionic description of charge and spin transport and intrinsic nonlinearity of spin currents". International Journal of Modern Physics B 32, n.º 26 (18 de octubre de 2018): 1850292. http://dx.doi.org/10.1142/s0217979218502922.

Texto completo
Resumen
We present a unified theory of charge and spin transport using quaternionic formalism. It is shown that both charge and spin currents can be combined together to form a quaternionic current. The scalar and vector part of quaternionic currents correspond to charge and spin currents, respectively. We formulate a unitarity condition on the scattering matrix for quaternionic current conservation. It is shown that in the presence of spin flip interactions, a weaker quaternionic unitarity condition implying charge flux conservation but spin flux nonconservation is valid. Using this unified theory, we find that spin currents are intrinsically nonlinear. Its implication for recent experimental observation of spin generation far away from the boundaries are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ahn, Changhyun, Hyunsu Kim y Jinsub Paeng. "Three-point functions in the 𝒩 = 4 orthogonal coset theory". International Journal of Modern Physics A 31, n.º 16 (9 de junio de 2016): 1650090. http://dx.doi.org/10.1142/s0217751x16500901.

Texto completo
Resumen
We construct the lowest higher spin-2 current in terms of the spin-1 and the spin-[Formula: see text] currents living in the orthogonal [Formula: see text] Wolf space coset theory for general [Formula: see text]. The remaining 15 higher spin currents are determined. We obtain the three-point functions of bosonic (higher) spin currents with two scalars for finite [Formula: see text] and [Formula: see text] (the level of the spin-1 current). By multiplying [Formula: see text] into the above Wolf space coset theory, the other 15 higher spin currents together with the above lowest higher spin-2 current are realized in the extension of the large [Formula: see text] linear superconformal algebra. Similarly, the three-point functions of bosonic (higher) spin currents with two scalars for finite [Formula: see text] and [Formula: see text] are obtained. Under the large [Formula: see text] ’t Hooft limit, the two types of three-point functions in the nonlinear and linear versions coincide as in the unitary coset theory found previously.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mewes, Claudia K. A. "Spin currents go nuclear". Nature Physics 15, n.º 1 (22 de octubre de 2018): 8–9. http://dx.doi.org/10.1038/s41567-018-0335-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ong, N. P. "Recipe for spin currents". Nature 455, n.º 7214 (octubre de 2008): 741–43. http://dx.doi.org/10.1038/455741a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rebei, A., W. N. G. Hitchon y R. W. Chantrell. "Spin currents in ferromagnets". Physics Letters A 346, n.º 5-6 (octubre de 2005): 371–77. http://dx.doi.org/10.1016/j.physleta.2005.07.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nguyen, Hoang Yen Thi, Sung-Jung Joo, Kuyoul Jung y Kyung-Ho Shin. "Field Dependence of Switching Currents in an Exchange Biased Spin Valve". Journal of Nanoscience and Nanotechnology 7, n.º 1 (1 de enero de 2007): 344–49. http://dx.doi.org/10.1166/jnn.2007.18033.

Texto completo
Resumen
Current induced magnetic reversal due to spin transfer torque is a promising candidate in advanced information storage technology. It has been intensively studied. This work reports the field-dependence of switching-currents for current induced magnetization switching in a uncoupled nano-sized cobalt-based spin valve of exchange biased type. The dependency is investigated in hysteretic regime at room temperature, in comparison with that of a trilayer simple spin valve. In the simple spin valve, the switching currents behave to the positive and the negative applied magnetic field symmetrically. In the exchange biased type, in contrast, the switching currents respond to the negative field in a quite unusual and different manner than to the positive field. A negative magnetic field then can shift the switching-currents into either negative or positive current range, dependently on whether a parallel or an antiparallel state of the spin valve was produced by that field. This different character of switching currents in the negative field range can be explained by the effect of the exchange bias pinning field on the spin-polarizer (the fixed Co layer) of the exchange biased spin valve. That unidirectional pinning filed could suppress the thermal magnetization fluctuation in the spin-polarizer, leading to a higher spin polarization of the current, and hence a lower switching current density than in the simple spin valve.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rybachuk, E. V. "CONSISTENT MODEL FOR INTERACTIONS OF HIGHER-SPIN FERMIONS WITH 0- AND 1/2 - SPIN PARTICLES AND πN - SCATTERING". East European Journal of Physics 3, n.º 1 (23 de abril de 2016): 23–34. http://dx.doi.org/10.26565/2312-4334-2016-1-02.

Texto completo
Resumen
It is shown that the currents for the interactions of the higher spin fermions must obey the theorem on currents and fields as well as the theorem on continuity of current derivatives. In consequence of the theorem on continuity of current derivatives the current components must decrease at pν→∞, where p is the momentum of the higher spin fermion. The decrease of the currents is ensured by the form factors. The form factor in the vertex function of the interaction of the higher spin fermion with the 0 - and 1/2 - spin particles is derived in agreement with the theorem on continuity of current derivatives. The proposed model of the currents is used for the calculations of the contributions of the higher spin nucleon resonances N*(J) (J is the spin of higher spin fermion) to the s-8 channel amplitudes of the elastic πN-scattering. It is shown that these contributions to the amplitudes decrease at least as at the square of the energy s→∞.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Feng, Xiao-Yu, Qi-Han Zhang, Han-Wen Zhang, Yi Zhang, Rui Zhong, Bo-Wen Lu, Jiang-Wei Cao y Xiao-Long Fan. "A review of current research on spin currents and spin–orbit torques". Chinese Physics B 28, n.º 10 (septiembre de 2019): 107105. http://dx.doi.org/10.1088/1674-1056/ab425e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Valenzuela, S. O. y M. Tinkham. "Electrical detection of spin currents: The spin-current induced Hall effect (invited)". Journal of Applied Physics 101, n.º 9 (mayo de 2007): 09B103. http://dx.doi.org/10.1063/1.2710794.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ahn, Changhyun. "Higher spin currents with manifest SO(4) symmetry in the large 𝒩 = 4 holography". International Journal of Modern Physics A 33, n.º 35 (20 de diciembre de 2018): 1850208. http://dx.doi.org/10.1142/s0217751x18502081.

Texto completo
Resumen
The large [Formula: see text] nonlinear superconformal algebra is generated by six spin-[Formula: see text] currents, four spin-[Formula: see text] currents and one spin-[Formula: see text] current. The simplest extension of these [Formula: see text] currents is described by the [Formula: see text] higher spin currents of spins [Formula: see text]. In this paper, by using the defining operator product expansions (OPEs) between the [Formula: see text] currents and [Formula: see text] higher spin currents, we determine the [Formula: see text] higher spin currents (the higher spin-[Formula: see text] currents were found previously) in terms of affine Kac–Moody spin-[Formula: see text], one currents in the Wolf space coset model completely. An antisymmetric second rank tensor, three antisymmetric almost complex structures or the structure constant are contracted with the multiple product of spin-[Formula: see text] currents. The eigenvalues are computed for coset representations containing at most four boxes, at finite [Formula: see text] and [Formula: see text]. After calculating the eigenvalues of the zeromode of the higher spin-[Formula: see text] current acting on the higher representations up to three (or four) boxes of Young tableaux in [Formula: see text] in the Wolf space coset, we obtain the corresponding three-point functions with two scalar operators at finite [Formula: see text]. Furthermore, under the large [Formula: see text] ’t Hooft-like limit, the eigenvalues associated with any boxes of Young tableaux are obtained and the corresponding three-point functions are written in terms of the ’t Hooft coupling constant in simple form in addition to the two-point functions of scalars and the number of boxes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

CULCER, DIMITRIE. "STEADY-STATE SPIN DENSITIES AND CURRENTS". International Journal of Modern Physics B 22, n.º 27 (30 de octubre de 2008): 4765–91. http://dx.doi.org/10.1142/s021797920804911x.

Texto completo
Resumen
This article reviews steady-state spin densities and spin currents in materials with strong spin-orbit interactions. These phenomena are intimately related to spin precession due to spin-orbit coupling, which has no equivalent in the steady state of charge distributions. The focus will initially be on effects originating from the band structure. In this case, spin densities arise in an electric field because a component of each spin is conserved during precession. Spin currents arise because a component of each spin is continually precessing. These two phenomena are due to independent contributions to the steady-state density matrix, and scattering between the conserved and precessing spin distributions has important consequences for spin dynamics and spin-related effects in general. In the latter part of the article, extrinsic effects such as skew scattering and side jump will be discussed, and it will be shown that these effects are also modified considerably by spin precession. Theoretical and experimental progress in all areas will be reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ehrenman, Gayle. "Current From Currents". Mechanical Engineering 125, n.º 02 (1 de febrero de 2003): 40–41. http://dx.doi.org/10.1115/1.2003-feb-2.

Texto completo
Resumen
This article discusses that in the quest for renewable energy, the oceans’ tides and flow have gone largely untapped. Companies in the United Kingdom and Canada are trying to harvest the power of sea current through new application of an old technology: turbines. IT Power is using technology from its spin-off company, Marine Current Turbines, also in Hampshire. The technology consists of a pair of axial flow rotors that are roughly 50 to 65 feet in diameter. Each drives a generator via a gearbox, much like a wind turbine. Blue Energy Canada is also working the currents. Its approach differs from that of IT Power in two significant ways: orientation of the turbine blades and their arrangement. A study conducted in 2001 by Triton Consultants, based in Vancouver, BC, on behalf of BC Hydro (one of the largest electrical utilities in Canada), found that the cost to develop a current turbine site is rather high, but the cost of annual power generation would be low. The study considered a site at the Discovery Passage in British Columbia, which it speculated would run 7941-MW Marine Current Turbines spread over roughly 3922 acres.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Bennemann, K. H. "Spin-dependent currents in nanostructures". International Journal of Modern Physics B 30, n.º 13 (19 de mayo de 2016): 1642012. http://dx.doi.org/10.1142/s0217979216420121.

Texto completo
Resumen
Spin-dependent currents in nanostructures, in particular, tunnel junctions are discussed. Using Onsager response theory a compact description of coupled spin-dependent thermoelectric currents in tunnel junctions is achieved. This may also apply to magnetohydrodynamics and cosmology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wegrowe, Jean-Eric y Henri-Jean Drouhin. "Spin-Currents and Spin-Pumping Forces for Spintronics". Entropy 13, n.º 2 (28 de enero de 2011): 316–31. http://dx.doi.org/10.3390/e13020316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Idrish Miah, M. "Spin drift and spin diffusion currents in semiconductors". Science and Technology of Advanced Materials 9, n.º 3 (julio de 2008): 035014. http://dx.doi.org/10.1088/1468-6996/9/3/035014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Nogaret, A., P. Saraiva, B. Dai y J. C. Portal. "Control of spin currents with double spin resonance". Physica E: Low-dimensional Systems and Nanostructures 42, n.º 4 (febrero de 2010): 926–28. http://dx.doi.org/10.1016/j.physe.2009.11.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

VALENZUELA, SERGIO O. "NONLOCAL ELECTRONIC SPIN DETECTION, SPIN ACCUMULATION AND THE SPIN HALL EFFECT". International Journal of Modern Physics B 23, n.º 11 (30 de abril de 2009): 2413–38. http://dx.doi.org/10.1142/s021797920905290x.

Texto completo
Resumen
In recent years, electrical spin injection and detection has grown into a lively area of research in the field of spintronics. Spin injection into a paramagnetic material is usually achieved by means of a ferromagnetic source, whereas the induced spin accumulation or associated spin currents are detected by means of a second ferromagnet or the reciprocal spin Hall effect, respectively. This article reviews the current status of this subject, describing both recent progress and well-established results. The emphasis is on experimental techniques and accomplishments that brought about important advances in spin phenomena and possible technological applications. These advances include, amongst others, the characterization of spin diffusion and precession in a variety of materials, such as metals, semiconductors and graphene, the determination of the spin polarization of tunneling electrons as a function of the bias voltage, and the implementation of magnetization reversal in nanoscale ferromagnetic particles with pure spin currents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Choi, Taeseung, Chang-Mo Ryu y A. M. Jayannavar. "Directional Dependence of Spin Currents Induced by Aharonov–Casher Phase". International Journal of Modern Physics B 12, n.º 20 (10 de agosto de 1998): 2091–102. http://dx.doi.org/10.1142/s021797929800123x.

Texto completo
Resumen
We have calculated the persistent spin current of an open ring induced by the Aharonov–Casher phase. For unpolarized electrons there exist no persistent charge currents, but persistent spin currents. We show that, in general, the magnitude of the persistent spin current in a ring depends on the direction of the direct current flow from one reservoir to another. The persistent spin current is modulated by the cosine function of the spin precession angle. The nonadiabatic Aharonov–Casher phase gives anomalous behaviors. The Aharonov–Anandan phase is determined by the solid angle of spin precession. When the nonadiabatic Aharonov–Anandan phase approaches a constant value with the increase of the electric field, the periodic behavior of the spin persistent current occurs in an adiabatic limit. In this limit the periodic behavior of the persistent spin current could be understood by the effective spin-dependent Aharonov–Bohm flux.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

NAKATA, KOUKI. "TEMPERATURE DEPENDENCE OF SPIN CURRENTS CARRIED BY JORDAN–WIGNER FERMIONS AND MAGNONS IN INSULATORS". International Journal of Modern Physics B 26, n.º 01 (10 de enero de 2012): 1250011. http://dx.doi.org/10.1142/s0217979211102071.

Texto completo
Resumen
The temperature dependence of spin currents in insulators at the finite temperature near zero Kelvin is theoretically studied. The spin currents are carried by Jordan–Wigner fermions and magnons in one- and three-dimensional insulators. These spin currents are generated by the external magnetic field gradient along the quantization axis and also by the two-particle interaction gradient. In one-dimensional insulators, quantum fluctuations are strong and the spin current carried by Jordan–Wigner fermions shows the stronger dependence on temperatures than the one by magnons.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Otani, Yoshichika y Takashi Kimura. "Manipulation of spin currents in metallic systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, n.º 1948 (13 de agosto de 2011): 3136–49. http://dx.doi.org/10.1098/rsta.2011.0010.

Texto completo
Resumen
The transport properties of diffusive spin currents have been investigated in lateral ferromagnetic/non-magnetic metal hybrid structures. The spin diffusion processes were found to be strongly dependent on the magnitude of the spin resistances of connected materials. Efficient spin injection and detection are accomplished by optimizing the junction structures on the basis of the spin resistance circuitry. The magnetization switching of a nanoscale ferromagnetic particle and also room temperature spin Hall effect measurements were realized by using an efficient pure-spin-current injection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dugaev, V. K., P. Bruno y J. Barnaś. "Spin Currents in Magnetic Nanostructures". Acta Physica Polonica A 114, n.º 5 (noviembre de 2008): 975–82. http://dx.doi.org/10.12693/aphyspola.114.975.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Gómez, J. E., J. M. Vargas, L. Avilés-Félix y A. Butera. "Magnetoelectric control of spin currents". Applied Physics Letters 108, n.º 24 (13 de junio de 2016): 242413. http://dx.doi.org/10.1063/1.4954167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nazarov, Yuli V. "Mesoscopic fluctuations of spin currents". New Journal of Physics 9, n.º 9 (28 de septiembre de 2007): 352. http://dx.doi.org/10.1088/1367-2630/9/9/352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hirobe, Daichi, Masahiro Sato, Takayuki Kawamata, Yuki Shiomi, Ken-ichi Uchida, Ryo Iguchi, Yoji Koike, Sadamichi Maekawa y Eiji Saitoh. "One-dimensional spinon spin currents". Nature Physics 13, n.º 1 (26 de septiembre de 2016): 30–34. http://dx.doi.org/10.1038/nphys3895.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Donaldson, Laurie. "Spin ice gives currents life". Materials Today 14, n.º 4 (abril de 2011): 127. http://dx.doi.org/10.1016/s1369-7021(11)70072-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sherman, E. Ya, Ali Najmaie, H. M. van Driel, Arthur L. Smirl y J. E. Sipe. "Ultrafast extrinsic spin-Hall currents". Solid State Communications 139, n.º 9 (septiembre de 2006): 439–46. http://dx.doi.org/10.1016/j.ssc.2006.07.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Di Salvo, E. "Currents, instantons and spin crisis". Il Nuovo Cimento A 105, n.º 2 (febrero de 1992): 171–75. http://dx.doi.org/10.1007/bf02826025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Fomin, I. A. "Spin currents in superfluid 3He". Physica B: Condensed Matter 169, n.º 1-4 (febrero de 1991): 153–63. http://dx.doi.org/10.1016/0921-4526(91)90222-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zhang, Shufeng. "Probing spin currents in semiconductors". Journal of Applied Physics 89, n.º 11 (junio de 2001): 7564–66. http://dx.doi.org/10.1063/1.1357125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Ando, Kazuya. "Dynamical generation of spin currents". Semiconductor Science and Technology 29, n.º 4 (26 de febrero de 2014): 043002. http://dx.doi.org/10.1088/0268-1242/29/4/043002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Shen, Zhi-Xun y Jonathan Sobota. "Taking control of spin currents". Nature 549, n.º 7673 (septiembre de 2017): 464–65. http://dx.doi.org/10.1038/549464a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ikeda, Tatsuhiko N. "Generation of DC, AC, and Second-Harmonic Spin Currents by Electromagnetic Fields in an Inversion-Asymmetric Antiferromagnet". Condensed Matter 4, n.º 4 (11 de diciembre de 2019): 92. http://dx.doi.org/10.3390/condmat4040092.

Texto completo
Resumen
Manipulating spin currents in magnetic insulators is a key technology in spintronics. We theoretically study a simple inversion-asymmetric model of quantum antiferromagnets, where both the exchange interaction and the magnetic field are staggered. We calculate spin currents generated by external electric and magnetic fields by using a quantum master equation. We show that an ac electric field with amplitude E 0 leads, through exchange-interaction modulation, to the dc and second-order harmonic spin currents proportional to E 0 2 . We also show that dc and ac staggered magnetic fields B 0 generate the dc and ac spin currents proportional to B 0 , respectively. We elucidate the mechanism by an exactly solvable model, and thereby propose the ways of spin current manipulation by electromagnetic fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Baek, Seung-heon C., Vivek P. Amin, Young-Wan Oh, Gyungchoon Go, Seung-Jae Lee, Geun-Hee Lee, Kab-Jin Kim, M. D. Stiles, Byong-Guk Park y Kyung-Jin Lee. "Spin currents and spin–orbit torques in ferromagnetic trilayers". Nature Materials 17, n.º 6 (19 de marzo de 2018): 509–13. http://dx.doi.org/10.1038/s41563-018-0041-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Cini, Michele. "Production, detection, storage and release of spin currents". Beilstein Journal of Nanotechnology 6 (13 de marzo de 2015): 736–43. http://dx.doi.org/10.3762/bjnano.6.75.

Texto completo
Resumen
Background: Quantum rings connected to ballistic circuits couple strongly to external magnetic fields if the connection is not symmetric. Moreover, properly connected rings can be used to pump currents in the wires giving raise to a number of interesting new phenomena. At half filling using a time-dependent magnetic field in the plane of the ring one can pump a pure spin current, excited by the the spin–orbit interaction in the ring. Results: Such a magnetic current is even under time reversal and produces an electric field instead of the usual magnetic field. Numerical simulations show that one can use magnetizable bodies as storage units to concentrate and save the magnetization in much the same way as capacitors operating with charge currents store electric charge. The polarization obtained in this way can then be used on command to produce spin currents in a wire. These currents show interesting oscillations while the storage units exchange their polarizations. Conclusion: The magnetic production of spin currents can be a useful alternative to optical excitation and electric field methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

GAO, HE y HONG-KANG ZHAO. "FANO-TYPE SPIN-FLIP MESOSCOPIC TRANSPORT THROUGH AN AHARONOV–BOHM INTERFEROMETER RESPONDED BY AC MAGNETIC FIELDS". International Journal of Modern Physics B 25, n.º 11 (30 de abril de 2011): 1511–30. http://dx.doi.org/10.1142/s0217979211100539.

Texto completo
Resumen
We have investigated the mesoscopic transport properties of an Aharonov–Bohm (AB) interferometer composed of a direct tunneling path and a resonant tunneling path incorporating a quantum dot (QD). The QD is perturbed by a rotating magnetic field (RMF) and an oscillating magnetic field (OMF). The nonresonant tunneling (NRT) path takes significant role in the spin and charge currents, and the Fano profiles display in the currents due to the modification of NRT strength. The spin current exhibits completely different behaviors as the source–drain bias eV = 0 and eV≠0. The spin current is symmetric versus gate voltage when the source–drain bias eV = 0; however, it becomes asymmetric Fano-line shape resulting from the interference effect when eV≠0. The OMF induced photon-assisted tunneling is quite different from the ones induced by the oscillating electric field and RMF. The tunnel currents vary dramatically with the evolution of the AB magnetic flux, and the Fano-type spin and charge currents are adjusted by OMF, RMF, AB flux, gate voltage, the source–drain bias, as well as the NRT strength to generate novel Fano-type photon-assisted spin and charge currents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Jiang, Peng y Zhongshui Ma. "Relation between spin current and spin torque in Rashba ferromagnets". Journal of Physics: Condensed Matter 34, n.º 3 (1 de noviembre de 2021): 035301. http://dx.doi.org/10.1088/1361-648x/ac2b6a.

Texto completo
Resumen
Abstract We establish a brief relation between spin current and spin torque, including spin–orbit torque and spin transfer torque in 2D Rashba ferromagnets with nonuniform magnetic texture. Both electrically and thermally induced charge, heat, and spin current are investigated by the Luttinger’s mechanical method, and we derive the contributions of magnetization corresponding to the thermal spin current and the thermal spin torque. The novel transport currents are also found in this paper when the interplay between spin–orbit coupling and nonuniform magnetic texture is taken into account.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Safranski, Christopher, Jonathan Z. Sun y Andrew D. Kent. "A perspective on electrical generation of spin current for magnetic random access memories". Applied Physics Letters 120, n.º 16 (18 de abril de 2022): 160502. http://dx.doi.org/10.1063/5.0084551.

Texto completo
Resumen
Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in two-terminal and three-terminal device geometries. In two-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In three-terminal devices, spin–orbit interactions in a channel material can also be used to generate large spin currents. In this Perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency—that can equal or exceed that produced by spin filtering—and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials and interface properties prior to full MTJ nanopillar device fabrication and characterization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ren, Ya-Jie y Kai Ma. "Influences of the coordinate dependent noncommutative space on charged and spin currents". International Journal of Modern Physics A 33, n.º 16 (7 de junio de 2018): 1850093. http://dx.doi.org/10.1142/s0217751x18500938.

Texto completo
Resumen
We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy–Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

DYAKONOV, M. I. "SPIN HALL EFFECT". International Journal of Modern Physics B 23, n.º 12n13 (20 de mayo de 2009): 2556–65. http://dx.doi.org/10.1142/s0217979209061986.

Texto completo
Resumen
A review of the phenomenology of the Spin Hall Effect and related phenomena originating from the coupling between spin and charge currents by spin-orbit interaction is presented. The physical origin of various effects in spin-dependent scattering is demonstrated. A previously unknown feature of spin transport, the swapping of spin currents, is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hirsch, J. E. "Electrodynamics of spin currents in superconductors". Annalen der Physik 520, n.º 6 (5 de junio de 2008): 380–409. http://dx.doi.org/10.1002/andp.20085200604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Fogelström, Mikael. "Josephson currents through spin-active interfaces". Physical Review B 62, n.º 17 (1 de noviembre de 2000): 11812–19. http://dx.doi.org/10.1103/physrevb.62.11812.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Barquilla-Cano, D., A. J. Buchmann y E. Hernández. "Axial exchange currents and nucleon spin". European Physical Journal A 27, n.º 3 (marzo de 2006): 365–72. http://dx.doi.org/10.1140/epja/i2005-10270-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Nair, Jayakrishnan M. P., Zhedong Zhang, Marlan O. Scully y Girish S. Agarwal. "Nonlinear spin currents". Physical Review B 102, n.º 10 (11 de septiembre de 2020). http://dx.doi.org/10.1103/physrevb.102.104415.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Anonymous. "Watching Spin Currents". Physics 9 (11 de agosto de 2016). http://dx.doi.org/10.1103/physics.9.s88.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Hayashi, Hiroki, Daegeun Jo, Dongwook Go, Tenghua Gao, Satoshi Haku, Yuriy Mokrousov, Hyun-Woo Lee y Kazuya Ando. "Observation of long-range orbital transport and giant orbital torque". Communications Physics 6, n.º 1 (6 de febrero de 2023). http://dx.doi.org/10.1038/s42005-023-01139-7.

Texto completo
Resumen
AbstractModern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate over longer distances than spin currents by more than an order of magnitude in a ferromagnet and nonmagnets. Furthermore, we find that the orbital current enables electric manipulation of magnetization with efficiencies significantly higher than the spin counterpart. These findings open the door to orbitronics that exploits orbital transport and spin-orbital coupled dynamics in solid-state devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Gürsoy, Fahriye Nur, P. Reck, Cosimo Gorini, Klaus Richter y Inanc Adagideli. "Dynamical spin-orbit-based spin transistor". SciPost Physics 14, n.º 4 (4 de abril de 2023). http://dx.doi.org/10.21468/scipostphys.14.4.060.

Texto completo
Resumen
Spin-orbit interaction (SOI) has been a key tool to steer and manipulate spin-dependent transport properties in two-dimensional electron gases. Here we demonstrate how spin currents can be created and efficiently read out in nano- or mesoscale conductors with time-dependent and spatially inhomogeneous Rashba SOI. Invoking an underlying non-Abelian SU(2) gauge structure we show how time-periodic spin-orbit fields give rise to spin electric forces and enable the generation of pure spin currents of the order of several hundred nano-Amperes. In a complementary way, by combining gauge transformations with “hidden” Onsager relations, we exploit spatially inhomogeneous Rashba SOI to convert spin currents (back) into charge currents. In combining both concepts, we devise a spin transistor that integrates efficient spin current generation, by employing dynamical SOI, with its experimentally feasible detection via conversion into charge signals. We derive general expressions for the respective spin- and charge conductance, covering large parameter regimes of SOI strength and driving frequencies, far beyond usual adiabatic approaches such as the frozen scattering matrix approximation. We check our analytical expressions and approximations with full numerical spin-dependent transport simulations and demonstrate that the predictions hold true in a wide range from low to high driving frequencies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hell, Michael, Sourin Das y Maarten R. Wegewijs. "Transport of spin anisotropy without spin currents". Physical Review B 88, n.º 11 (27 de septiembre de 2013). http://dx.doi.org/10.1103/physrevb.88.115435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía