Artículos de revistas sobre el tema "Spiking neural works"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Spiking neural works".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ponghiran, Wachirawit y Kaushik Roy. "Spiking Neural Networks with Improved Inherent Recurrence Dynamics for Sequential Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 8001–8. http://dx.doi.org/10.1609/aaai.v36i7.20771.
Texto completoChunduri, Raghavendra K. y Darshika G. Perera. "Neuromorphic Sentiment Analysis Using Spiking Neural Networks". Sensors 23, n.º 18 (6 de septiembre de 2023): 7701. http://dx.doi.org/10.3390/s23187701.
Texto completoSzczęsny, Szymon, Damian Huderek y Łukasz Przyborowski. "Spiking Neural Network with Linear Computational Complexity for Waveform Analysis in Amperometry". Sensors 21, n.º 9 (10 de mayo de 2021): 3276. http://dx.doi.org/10.3390/s21093276.
Texto completoNgu, Huynh Cong Viet y Keon Myung Lee. "Effective Conversion of a Convolutional Neural Network into a Spiking Neural Network for Image Recognition Tasks". Applied Sciences 12, n.º 11 (6 de junio de 2022): 5749. http://dx.doi.org/10.3390/app12115749.
Texto completoNgu, Huynh Cong Viet y Keon Myung Lee. "Effective Conversion of a Convolutional Neural Network into a Spiking Neural Network for Image Recognition Tasks". Applied Sciences 12, n.º 11 (6 de junio de 2022): 5749. http://dx.doi.org/10.3390/app12115749.
Texto completoYan, Zhanglu, Jun Zhou y Weng-Fai Wong. "Near Lossless Transfer Learning for Spiking Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10577–84. http://dx.doi.org/10.1609/aaai.v35i12.17265.
Texto completoKim, Youngeun, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Anna Hambitzer y Priyadarshini Panda. "Exploring Temporal Information Dynamics in Spiking Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8308–16. http://dx.doi.org/10.1609/aaai.v37i7.26002.
Texto completoMárquez-Vera, Carlos Antonio, Zaineb Yakoub, Marco Antonio Márquez Vera y Alfian Ma'arif. "Spiking PID Control Applied in the Van de Vusse Reaction". International Journal of Robotics and Control Systems 1, n.º 4 (25 de noviembre de 2021): 488–500. http://dx.doi.org/10.31763/ijrcs.v1i4.490.
Texto completoWu, Yujie, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie y Luping Shi. "Direct Training for Spiking Neural Networks: Faster, Larger, Better". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 1311–18. http://dx.doi.org/10.1609/aaai.v33i01.33011311.
Texto completoLourenço, J., Q. R. Al-Taai, A. Al-Khalidi, E. Wasige y J. Figueiredo. "Resonant Tunnelling Diode – Photodetectors for spiking neural networks". Journal of Physics: Conference Series 2407, n.º 1 (1 de diciembre de 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2407/1/012047.
Texto completoFu, Si-Yao, Guo-Sheng Yang y Xin-Kai Kuai. "A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition". Computational Intelligence and Neuroscience 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/946589.
Texto completoXiao, Chao, Jihua Chen y Lei Wang. "Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI". Sensors 22, n.º 19 (24 de septiembre de 2022): 7248. http://dx.doi.org/10.3390/s22197248.
Texto completo‘Atyka Nor Rashid, Fadilla y Nor Surayahani Suriani. "Spiking neural network classification for spike train analysis of physiotherapy movements". Bulletin of Electrical Engineering and Informatics 9, n.º 1 (1 de febrero de 2020): 319–25. http://dx.doi.org/10.11591/eei.v9i1.1868.
Texto completoKheradpisheh, Saeed Reza y Timothée Masquelier. "Temporal Backpropagation for Spiking Neural Networks with One Spike per Neuron". International Journal of Neural Systems 30, n.º 06 (28 de mayo de 2020): 2050027. http://dx.doi.org/10.1142/s0129065720500276.
Texto completoAl-Hamid, Ali A. y HyungWon Kim. "Optimization of Spiking Neural Networks Based on Binary Streamed Rate Coding". Electronics 9, n.º 10 (29 de septiembre de 2020): 1599. http://dx.doi.org/10.3390/electronics9101599.
Texto completoQin, Xing, Chaojie Li, Haitao He, Zejun Pan y Chenxiao Lai. "Python-Based Circuit Design for Fundamental Building Blocks of Spiking Neural Network". Electronics 12, n.º 11 (23 de mayo de 2023): 2351. http://dx.doi.org/10.3390/electronics12112351.
Texto completoKorsakov, Anton, Lyubov Astapova y Aleksandr Bakhshiev. "Application of a Compartmental Spiking Neuron Model with Structural Adaptation for Solving Classification Problems". Informatics and Automation 21, n.º 3 (13 de mayo de 2022): 493–520. http://dx.doi.org/10.15622/ia.21.3.2.
Texto completoQiu, Xuerui, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-Jian Deng y Guoqi Li. "Gated Attention Coding for Training High-Performance and Efficient Spiking Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de marzo de 2024): 601–10. http://dx.doi.org/10.1609/aaai.v38i1.27816.
Texto completoSakthivadivel, Dalton A. R. "Formalizing the Use of the Activation Function in Neural Inference". Complex Systems 31, n.º 4 (15 de diciembre de 2022): 433–49. http://dx.doi.org/10.25088/complexsystems.31.4.433.
Texto completoLiu, Jing, Xu Yang, Yimeng Zhu, Yunlin Lei, Jian Cai, Miao Wang, Ziyi Huan y Xialv Lin. "How Neuronal Noises Influence the Spiking Neural Networks’s Cognitive Learning Process: A Preliminary Study". Brain Sciences 11, n.º 2 (25 de enero de 2021): 153. http://dx.doi.org/10.3390/brainsci11020153.
Texto completoKanazawa, Yusuke, Tetsuya Asai y Yoshihito Amemiya. "Basic Circuit Design of a Neural Processor: Analog CMOS Implementation of Spiking Neurons and Dynamic Synapses". Journal of Robotics and Mechatronics 15, n.º 2 (20 de abril de 2003): 208–18. http://dx.doi.org/10.20965/jrm.2003.p0208.
Texto completoHandy, Gregory y Alla Borisyuk. "Investigating the ability of astrocytes to drive neural network synchrony". PLOS Computational Biology 19, n.º 8 (9 de agosto de 2023): e1011290. http://dx.doi.org/10.1371/journal.pcbi.1011290.
Texto completoSaemaldahr, Raghdah y Mohammad Ilyas. "Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning". Sensors 23, n.º 14 (21 de julio de 2023): 6578. http://dx.doi.org/10.3390/s23146578.
Texto completoO’Donnell, Cian, J. Tiago Gonçalves, Nick Whiteley, Carlos Portera-Cailliau y Terrence J. Sejnowski. "The Population Tracking Model: A Simple, Scalable Statistical Model for Neural Population Data". Neural Computation 29, n.º 1 (enero de 2017): 50–93. http://dx.doi.org/10.1162/neco_a_00910.
Texto completoWang, Jiang, Ruixue Han, Xilei Wei, Yingmei Qin, Haitao Yu y Bin Deng. "Weak signal detection and propagation in diluted feed-forward neural network with recurrent excitation and inhibition". International Journal of Modern Physics B 30, n.º 02 (20 de enero de 2016): 1550253. http://dx.doi.org/10.1142/s0217979215502537.
Texto completoLi, Duowei, Jianping Wu y Depin Peng. "Online Traffic Accident Spatial-Temporal Post-Impact Prediction Model on Highways Based on Spiking Neural Networks". Journal of Advanced Transportation 2021 (2 de diciembre de 2021): 1–20. http://dx.doi.org/10.1155/2021/9290921.
Texto completoHarel, Yuval y Ron Meir. "Optimal Multivariate Tuning with Neuron-Level and Population-Level Energy Constraints". Neural Computation 32, n.º 4 (abril de 2020): 794–828. http://dx.doi.org/10.1162/neco_a_01267.
Texto completoKleijnen, Robert, Markus Robens, Michael Schiek y Stefan van Waasen. "A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Networks". Journal of Low Power Electronics and Applications 12, n.º 2 (21 de abril de 2022): 23. http://dx.doi.org/10.3390/jlpea12020023.
Texto completoWang, Yihao, Danqing Wu, Yu Wang, Xianwu Hu, Zizhao Ma, Jiayun Feng y Yufeng Xie. "A Low-Cost Hardware-Friendly Spiking Neural Network Based on Binary MRAM Synapses, Accelerated Using In-Memory Computing". Electronics 10, n.º 19 (8 de octubre de 2021): 2441. http://dx.doi.org/10.3390/electronics10192441.
Texto completoChen, Ruizhi y Ling Li. "Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation". Neural Computation 32, n.º 12 (diciembre de 2020): 2557–600. http://dx.doi.org/10.1162/neco_a_01319.
Texto completoQiu, Xiaorong, Ye Xu, Yingzhong Shi, S. Kannadhasan Deepa y S. Balakumar. "Maximum Entropy Principle Based on Bank Customer Account Validation Using the Spark Method". Journal of Computer Networks and Communications 2023 (31 de diciembre de 2023): 1–13. http://dx.doi.org/10.1155/2023/8840168.
Texto completoMorita, Kenta, Haruhiko Takase, Naoki Morita, Hiroharu Kawanak y Hidehiko Kita. "Spiking Neural Network to Extract Frequent Words from Japanese Speech Data". Procedia Computer Science 159 (2019): 363–71. http://dx.doi.org/10.1016/j.procs.2019.09.191.
Texto completoFadhil, Muthna Jasim, Maitham Ali Naji y Ghalib Ahmed Salman. "Transceiver error reduction by design prototype system based on neural network analysis method". Indonesian Journal of Electrical Engineering and Computer Science 18, n.º 3 (1 de junio de 2020): 1244. http://dx.doi.org/10.11591/ijeecs.v18.i3.pp1244-1251.
Texto completoNaudin, Loïs. "Biological emergent properties in non-spiking neural networks". AIMS Mathematics 7, n.º 10 (2022): 19415–39. http://dx.doi.org/10.3934/math.20221066.
Texto completoGrimaldi, Antoine, Amélie Gruel, Camille Besnainou, Jean-Nicolas Jérémie, Jean Martinet y Laurent U. Perrinet. "Precise Spiking Motifs in Neurobiological and Neuromorphic Data". Brain Sciences 13, n.º 1 (29 de diciembre de 2022): 68. http://dx.doi.org/10.3390/brainsci13010068.
Texto completoLong, Yun. "Design and Evaluation of English Vocabulary Learning Aids Based on Word Vector Modelling". Journal of Electrical Systems 20, n.º 6s (29 de abril de 2024): 1763–74. http://dx.doi.org/10.52783/jes.3094.
Texto completoHayat, Hanna, Amit Marmelshtein, Aaron J. Krom, Yaniv Sela, Ariel Tankus, Ido Strauss, Firas Fahoum, Itzhak Fried y Yuval Nir. "Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep". Nature Neuroscience 25, n.º 7 (julio de 2022): 935–43. http://dx.doi.org/10.1038/s41593-022-01107-4.
Texto completoPattusamy, Murugan y Lakshmi Kanth. "Classification of Tweets Into Facts and Opinions Using Recurrent Neural Networks". International Journal of Technology and Human Interaction 19, n.º 1 (10 de marzo de 2023): 1–14. http://dx.doi.org/10.4018/ijthi.319358.
Texto completoHatsopoulos, N. G., M. Burrows y G. Laurent. "Hysteresis reduction in proprioception using presynaptic shunting inhibition". Journal of Neurophysiology 73, n.º 3 (1 de marzo de 1995): 1031–42. http://dx.doi.org/10.1152/jn.1995.73.3.1031.
Texto completoLarsson, J. P., Fátima Vera Constán, Núria Sebastián-Gallés y Gustavo Deco. "Lexical Plasticity in Early Bilinguals Does Not Alter Phoneme Categories: I. Neurodynamical Modeling". Journal of Cognitive Neuroscience 20, n.º 1 (enero de 2008): 76–94. http://dx.doi.org/10.1162/jocn.2008.20004.
Texto completoSkinner, T. L. y B. Peretz. "Age sensitivity of osmoregulation and of its neural correlates in Aplysia". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 256, n.º 4 (1 de abril de 1989): R989—R996. http://dx.doi.org/10.1152/ajpregu.1989.256.4.r989.
Texto completoWoo, Dae-Seong, Hyun-Do Choi, Hong-Uk Jin, Jae-Kyeong Kim, Tae-Hun Shim y Jea-Gun Park. "Multi-Bit Self-Rectifying Synaptic Memristor Having Tri-Layer Structure for Quantization Aware Training of Quantized Neural Network". ECS Meeting Abstracts MA2023-02, n.º 30 (22 de diciembre de 2023): 1560. http://dx.doi.org/10.1149/ma2023-02301560mtgabs.
Texto completoLee, Albert K. y Matthew A. Wilson. "A Combinatorial Method for Analyzing Sequential Firing Patterns Involving an Arbitrary Number of Neurons Based on Relative Time Order". Journal of Neurophysiology 92, n.º 4 (octubre de 2004): 2555–73. http://dx.doi.org/10.1152/jn.01030.2003.
Texto completoUusitalo, R. O., M. Juusola y M. Weckstrom. "Graded responses and spiking properties of identified first-order visual interneurons of the fly compound eye". Journal of Neurophysiology 73, n.º 5 (1 de mayo de 1995): 1782–92. http://dx.doi.org/10.1152/jn.1995.73.5.1782.
Texto completoBarrio, L. C., A. Araque y W. Buno. "Participation of voltage-gated conductances on the response succeeding inhibitory synaptic potentials in the crayfish slowly adapting stretch receptor neuron". Journal of Neurophysiology 72, n.º 3 (1 de septiembre de 1994): 1140–51. http://dx.doi.org/10.1152/jn.1994.72.3.1140.
Texto completoYan, Yulong, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou y Lirong Zheng. "Backpropagation With Sparsity Regularization for Spiking Neural Network Learning". Frontiers in Neuroscience 16 (14 de abril de 2022). http://dx.doi.org/10.3389/fnins.2022.760298.
Texto completoGuo, Yufei, Xuhui Huang y Zhe Ma. "Direct learning-based deep spiking neural networks: a review". Frontiers in Neuroscience 17 (16 de junio de 2023). http://dx.doi.org/10.3389/fnins.2023.1209795.
Texto completoPoliti, Antonio y Alessandro Torcini. "A robust balancing mechanism for spiking neural networks". Chaos: An Interdisciplinary Journal of Nonlinear Science 34, n.º 4 (1 de abril de 2024). http://dx.doi.org/10.1063/5.0199298.
Texto completoWang, Jing. "Training multi-layer spiking neural networks with plastic synaptic weights and delays". Frontiers in Neuroscience 17 (24 de enero de 2024). http://dx.doi.org/10.3389/fnins.2023.1253830.
Texto completoPandey, Shagun. "Advancements in Gas Recognition Techniques for Electronic Nose Systems: A Comparative Review of Classical Methods and Spiking Neural Networks". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, n.º 07 (22 de julio de 2023). http://dx.doi.org/10.55041/ijsrem24791.
Texto completo