Literatura académica sobre el tema "Spectral networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Spectral networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Spectral networks"
Wu, Tingzeng y Huazhong Lü. "Per-Spectral Characterizations of Bicyclic Networks". Journal of Applied Mathematics 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/7541312.
Texto completoGaiotto, Davide, Gregory W. Moore y Andrew Neitzke. "Spectral Networks". Annales Henri Poincaré 14, n.º 7 (8 de marzo de 2013): 1643–731. http://dx.doi.org/10.1007/s00023-013-0239-7.
Texto completoAnastasiadis, Johannes y Michael Heizmann. "GAN-regularized augmentation strategy for spectral datasets". tm - Technisches Messen 89, n.º 4 (5 de febrero de 2022): 278–88. http://dx.doi.org/10.1515/teme-2021-0109.
Texto completoPenttilä, A., H. Hietala y K. Muinonen. "Asteroid spectral taxonomy using neural networks". Astronomy & Astrophysics 649 (mayo de 2021): A46. http://dx.doi.org/10.1051/0004-6361/202038545.
Texto completoAvdic, Senada, Roumiana Chakarova y Imre Pazsit. "Analysis of the experimental positron lifetime spectra by neural networks". Nuclear Technology and Radiation Protection 18, n.º 1 (2003): 16–21. http://dx.doi.org/10.2298/ntrp0301016a.
Texto completoTanabe, Kazutoshi, Takatoshi Matsumoto, Tadao Tamura, Jiro Hiraishi, Shinnosuke Saeki, Miwako Arima, Chisato Ono et al. "Identification of Chemical Structures from Infrared Spectra by Using Neural Networks". Applied Spectroscopy 55, n.º 10 (octubre de 2001): 1394–403. http://dx.doi.org/10.1366/0003702011953531.
Texto completoCabrol-Bass, D., C. Cachet, C. Cleva, A. Eghbaldar y T. P. Forrest. "Application pratique des réseaux neuro mimétiques aux données spectroscopiques (infrarouge et masse) en vue de l'élucidation structurale". Canadian Journal of Chemistry 73, n.º 9 (1 de septiembre de 1995): 1412–26. http://dx.doi.org/10.1139/v95-176.
Texto completoPancoska, Petr, Vit Janota y Timothy A. Keiderling. "Interconvertibility of Electronic and Vibrational Circular Dichroism Spectra of Proteins: A Test of Principle Using Neural Network Mapping". Applied Spectroscopy 50, n.º 5 (mayo de 1996): 658–68. http://dx.doi.org/10.1366/0003702963905916.
Texto completoHumphries, Mark D., Javier A. Caballero, Mat Evans, Silvia Maggi y Abhinav Singh. "Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models". PLOS ONE 16, n.º 7 (2 de julio de 2021): e0254057. http://dx.doi.org/10.1371/journal.pone.0254057.
Texto completoBunimovich, Leonid, D. J. Passey, Dallas Smith y Benjamin Webb. "Spectral and Dynamic Consequences of Network Specialization". International Journal of Bifurcation and Chaos 30, n.º 06 (mayo de 2020): 2050091. http://dx.doi.org/10.1142/s0218127420500911.
Texto completoTesis sobre el tema "Spectral networks"
Lu, Lu. "Spectral-efficient design in modern wireless communications networks". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53902.
Texto completoBandeira, Nuno Filipe Cabrita. "Spectral networks algorithms for de novo interpretation of tandem mass spectra". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3274510.
Texto completoTitle from first page of PDF file (viewed October 2, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 141-152).
Smith, Dallas C. "Network Specializations, Symmetries, and Spectral Properties". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6998.
Texto completoShorten, David. "Spectral analysis of neutral evolution". Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27420.
Texto completoMiao, Guowang. "Cross-layer optimization for spectral and energy efficiency". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31807.
Texto completoCommittee Chair: Li, Geoffrey Ye; Committee Member: Ma, Xiaoli; Committee Member: Stuber, Gordon; Committee Member: Wardi, Yorai; Committee Member: Yu, Xingxing. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Yamamoto, Koji. "Capacity and Spectral Efficiency of Multihop Radio Networks". 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/68891.
Texto completoAdouane, Amine Mohamed. "Dynamic management of spectral resources in LTE networks". Thesis, Versailles-St Quentin en Yvelines, 2015. http://www.theses.fr/2015VERS007V/document.
Texto completoThe exponential growth in the number of communications devices has set out new ambitious targets to meet the ever-increasing demand for user capacity in emerging wireless systems. However, the inherent impairments of communication channels in cellular systems pose constant challenges to meet the envisioned targets. High spectral reuse efficiency was adopted as a solution to higher data rates. Despite its benefits, high spectral reuse leads to increased interference over the network, which degrades performances of mobile users with bad channel quality. To face this added interfence, OFDM (Orthogonal Frequency Division Multiplexing) is used for the new 4th generation network. Thanks to its orthogonality OFDM eliminates the intra-cellular interference, but when the same resources are used in two adjacents cells, the inter-cell interference becomes severe. To get rid of the latter, several methods for Inter-Cell Interference Coordination (ICIC) have been proposed. ICIC allows coordinated radio resources management between multiple cells. The eNodeBs can share resource usage information and interference levels over the X2 interface through LTE-normalized messages. Non-cooperative game theory was largely applied were eNodeBs selfishly selects resource blocks (RBs) in order to minimize interference. In this thesis, we stress on ICIC for the downlink of a cellular OFDMA system in the context of the SOAPS (Spectrum Opportunistic Access in Public Safety) project. This project focuses on the improvement of frequency resource scheduling for Broadband Services provision by PMR (Private Mobile Radio) systems using LTE technologies. We addressed this problem with four different solutions based on Non-cooperative game theory, three algorithms are devoted to RB selection in order to manage the interference, while the last one is a power control scheme with power economy and enhanced system performances
Ahmed, Junaid. "Spectral efficiency of CDMA based ad-hoc networks". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/spectral-efficiency-of-cdma-based-adhoc-networks(f6d958ac-6778-416e-80a5-2318956dbaf2).html.
Texto completoLahsen-Cherif, Iyad. "Spectral and Energy Efficiency in 5G Wireless Networks". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS506/document.
Texto completoToday's networks continue to evolve and grow resulting more dense, complex and heterogeneous networks.This leads to new challenges such as finding new models to characterize the nodes distribution in the wireless network and approaches to mitigate interference. On the other hand, the energy consumption of WMNs is a challenging issue mainly in rural areas lacking of default electrical grids. Finding alternative technologies and approaches to reduce the consumed energy of these networks is a interesting task. This thesis focuses on proposing and evaluating interference management models for next generation wireless networks (5G and Very Dense High WLANs), and providing tools and technologies to reduce energy consumption of Wireless Mesh Networks (WMNs). Two different problems are thus studied; naturally the thesis is divided into two parts along the following chapters.The contribution of the first part of the thesis is threefold. Firstly, we develop our interference management coordination (CoMP-JT) model. The main idea of CoMP-JT is to turn signals generating harmful interference into useful signals. We develop a new model where BSs inside the coordinated set send a copy of data to border's users experiencing high interference. We consider the r-l Square point process to model the BSs distribution in the network. We derive network performance in terms of coverage probability and throughput. Additionally, we study the impact of the size of coordination set on the network performance. Secondly, we extend these results and provide a new model adopted for Dense Very high throughput WLANs. We take into consideration constraints of WLANs in our model such as carrier sensing range. Thirdly, we tackle resource allocation strategies to limit the interference in LTE networks. We study three cyclic allocation strategies: (i) the independent allocation, (ii) the static allocation and (iii) the load-dependent strategy. We derive tractable analytical expression of the first and second mean of interference. We validate the model using extensive simulations. Reducing the energy consumption and improving the energy efficiency of WMNs is our concern in the second part of the thesis. Indeed, we aim at studying the impact of directional antennas technology on the performance of WMNs, using both analysis and simulations. Fisrt, We derive the Number of Links (NLs) for the chain and grid topologies for different antennas beams. These results are based on the routing tables of nodes in the network. We consider different scenarios such as 1Source-NDestinations to model the downlink communications, NSources-1Destination to model the uplink communications and the 1Source-1Destination as a baseline scenario. Using ns-3 simulator, we simulate network performance in terms of Mean Loss Ratio, throughput, energy consumption and energy efficiency. Then, we study the impact of number of beams, network topology and size, the placement of the gateway on the network performance. Next, we go beyond simulations and propose an optimization framework minimizing the consumed energy while maximizing the network throughput for DAs WMNs. We consider a weighted objective function combining the energy consumption and the throughput. We use power control to adapt transmission power depending on the location of the next hop. This model is a first step to approve the obtained simulation results. We use ILOG Cplex solver to find the optimal solution. Results show that DAs improves the network throughput while reduce the energy consumption and that power control allows saving more energy. In this direction, the LCI4D Project aims at providing low cost infrastructure to connect isolated rural and sub-urban areas to the Internet. In order to reduce the installation and maintenance costs, LCI4D proposes the usage of self-configured Wireless Mesh Networks (WMNs) to connect multimode outdoor femtocells to the remote Marco cell (gateway)
Kunegis, Jérôme [Verfasser]. "On the Spectral Evolution of Large Networks / Jérôme Kunegis". Koblenz : Universitätsbibliothek Koblenz, 2011. http://d-nb.info/1017370893/34.
Texto completoLibros sobre el tema "Spectral networks"
Zhou, Xiang y Chongjin Xie, eds. Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119078289.
Texto completoKrogmeier, J. V. Wireless local area network for ITS communications using the 220 MHz ITS spectral allocation. West Lafayette, IN: Joint Highway Research Project, Purdue University, 2000.
Buscar texto completoOllikainen, Olavi. Applications of persistent spectral hole burning in ultrafast optical neural networks, time-resolved spectroscopy and holographic interferometry. Tartu: Tartu University Press, 1996.
Buscar texto completoSpectrum and network measurements. Atlanta, Ga: Noble Pub. Corp., 2001.
Buscar texto completoWitte, Robert A. Spectrum and network measurements. Englewood Cliffs, N.J: Prentice Hall, 1993.
Buscar texto completoAnn, Frazier y Geological Survey (U.S.). National Mapping Division, eds. Land cover classification from SPOT multispectral and panchromatic images using neural network classification of fuzzy clustered spectral and textural features. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, National Mapping Division, 1995.
Buscar texto completoLemeshewsky, George. Land cover classification from SPOT multispectral and panchromatic images using neural network classification of fuzzy clustered spectral and textural features. [Reston, VA]: U.S. Geological Survey, 1995.
Buscar texto completoGraph spectra for complex networks. Cambridge: Cambridge University Press, 2011.
Buscar texto completoSpectrum and network measurements. Englewood Cliffs, N.J: Prentice Hall, 1991.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Marine optical characterizations: Quarterly report. [Washington, DC: National Aeronautics and Space Administration, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Spectral networks"
Dorogovtsev, Sergei N., Alexander V. Goltsev, José F. F. Mendes y Alexander N. Samukhin. "Spectral Analysis of Random Networks". En Complex Networks, 35–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44485-5_2.
Texto completoBlekas, Konstantinos, K. Christodoulidou y I. E. Lagaris. "Newtonian Spectral Clustering". En Artificial Neural Networks – ICANN 2009, 145–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04277-5_15.
Texto completoDemirel-Frank, Semra. "Spectral Inequalities for Quantum Graphs". En Mathematical Technology of Networks, 65–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16619-3_6.
Texto completoDai, Qionghai y Yue Gao. "Neural Networks on Hypergraph". En Artificial Intelligence: Foundations, Theory, and Algorithms, 121–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0185-2_7.
Texto completoKurucz, Miklós, András A. Benczúr, Károly Csalogány y László Lukács. "Spectral Clustering in Social Networks". En Advances in Web Mining and Web Usage Analysis, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00528-2_1.
Texto completoKunegis, Jérôme. "Spectral Evolution of Social Networks". En Encyclopedia of Social Network Analysis and Mining, 1–9. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-7163-9_125-1.
Texto completoPalmer, William R. y Tian Zheng. "Spectral Clustering for Directed Networks". En Complex Networks & Their Applications IX, 87–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65347-7_8.
Texto completoKunegis, Jérôme. "Spectral Evolution of Social Networks". En Encyclopedia of Social Network Analysis and Mining, 2040–47. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6170-8_125.
Texto completoFarhi, Haider y Abderraouf Messai. "Spectral Capacity in Cognitive Networks". En Smart Innovation, Systems and Technologies, 423–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21009-0_41.
Texto completoKunegis, Jérôme. "Spectral Evolution of Social Networks". En Encyclopedia of Social Network Analysis and Mining, 2964–71. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7131-2_125.
Texto completoActas de conferencias sobre el tema "Spectral networks"
Li, Yuan, Zunyue Zhang, Yi Wang, Yue Yu, Xuetong Zhou, Hon Ki Tsang y Xiankai Sun. "Inverse-designed linear coherent photonic networks for high-resolution spectral reconstruction". En CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sth4g.1.
Texto completoJin, Shengmin y Reza Zafarani. "The Spectral Zoo of Networks: Embedding and Visualizing Networks with Spectral Moments". En KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394486.3403195.
Texto completoFeuer, Mark D., Mario V. Bnyamin y Xin Jiang. "Mitigation of Spectral Slicing Penalty Using Binary Polarization-Shift Keying". En Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth3d.5.
Texto completoGopalan, Abishek, Onur Turkcu, Biao Lu y Parthiban Kandappan. "Spectral Efficiencies of WDM Network Architectures with Sliceable Bandwidth Variable Transponders". En Photonic Networks and Devices. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/networks.2017.netu1b.3.
Texto completoParvin, B., Z. N. Ghosh, L. Heiser, M. Knapp, C. Talcott, K. Laderoute, J. Gray y P. Spellman. "Spectral Decomposition of Signaling Networks". En 2007 4th Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2007. http://dx.doi.org/10.1109/cibcb.2007.4221207.
Texto completoZheng, Q. y D. B. Skillicorn. "Spectral Embedding of Signed Networks". En Proceedings of the 2015 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. http://dx.doi.org/10.1137/1.9781611974010.7.
Texto completoZheng, Q. y D. B. Skillicorn. "Spectral Embedding of Directed Networks". En ASONAM '15: Advances in Social Networks Analysis and Mining 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2808797.2809310.
Texto completoMoitra, Ankur y Alexander S. Wein. "Spectral methods from tensor networks". En STOC '19: 51st Annual ACM SIGACT Symposium on the Theory of Computing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3313276.3316357.
Texto completoPedro, João. "Challenges of Designing Transparent Flexible-Grid Optical Networks for Maximum Spectral Efficiency". En Photonic Networks and Devices. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/networks.2016.new3c.1.
Texto completoGupta, Anjali y Brijendra Kumar Joshi. "Spectral Efficiency Evaluation of Network Coded Cognitive Radio Networks". En 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2022. http://dx.doi.org/10.1109/csnt54456.2022.9787641.
Texto completoInformes sobre el tema "Spectral networks"
Sweeney, Matthew y Emily Shinkle. Understanding Discrete Fracture Networks Through Spectral Graph Theory. Office of Scientific and Technical Information (OSTI), agosto de 2021. http://dx.doi.org/10.2172/1812641.
Texto completoSweeney, Matthew y Emily Shinkle. Understanding Discrete Fracture Networks Through Spectral Graph Theory. Office of Scientific and Technical Information (OSTI), agosto de 2021. http://dx.doi.org/10.2172/1812622.
Texto completoSoloviev, Vladimir, Victoria Solovieva, Anna Tuliakova, Alexey Hostryk y Lukáš Pichl. Complex networks theory and precursors of financial crashes. [б. в.], octubre de 2020. http://dx.doi.org/10.31812/123456789/4119.
Texto completoLiu, Ernest y Aleh Tsyvinski. Dynamical Structure and Spectral Properties of Input-Output Networks. Cambridge, MA: National Bureau of Economic Research, diciembre de 2020. http://dx.doi.org/10.3386/w28178.
Texto completoMayfield, Howard T., Delyle Eastwood y Larry W. Burggraf. Infrared Spectral Classification with Artificial Neural Networks and Classical Pattern Recognition. Fort Belvoir, VA: Defense Technical Information Center, enero de 2000. http://dx.doi.org/10.21236/ada377976.
Texto completoArmstrong, Derek Elswick y Joseph Gabriel Gorka. Using Deep Neural Networks to Extract Fireball Parameters from Infrared Spectral Data. Office of Scientific and Technical Information (OSTI), mayo de 2020. http://dx.doi.org/10.2172/1623398.
Texto completoSilvester, J. A. y A. Polydoros. Adaptive Spread Spectrum Networks. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1987. http://dx.doi.org/10.21236/ada187154.
Texto completoPursley, Michael B. y Dilip V. Sarwate. Spread Spectrum Radio Networks. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada188914.
Texto completoSastry, Ambatipudi R. Spread Spectrum Random Access Networks. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1993. http://dx.doi.org/10.21236/ada272280.
Texto completoMcEliece, Robert J. Spectrum Allocation Strategies for Communication Networks. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1994. http://dx.doi.org/10.21236/ada294936.
Texto completo