Artículos de revistas sobre el tema "Specific protein"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Specific protein.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Specific protein".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Sear, Richard P. "Specific protein–protein binding in many-component mixtures of proteins". Physical Biology 1, n.º 2 (29 de abril de 2004): 53–60. http://dx.doi.org/10.1088/1478-3967/1/2/001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hunte, C. "Specific protein–lipid interactions in membrane proteins". Biochemical Society Transactions 33, n.º 5 (1 de octubre de 2005): 938. http://dx.doi.org/10.1042/bst20050938.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hunte, C. "Specific protein–lipid interactions in membrane proteins". Biochemical Society Transactions 33, n.º 5 (26 de octubre de 2005): 938–42. http://dx.doi.org/10.1042/bst0330938.

Texto completo
Resumen
Many membrane proteins selectively bind defined lipid species. This specificity has an impact on correct insertion, folding, structural integrity and full functionality of the protein. How are these different tasks achieved? Recent advances in structural research of membrane proteins provide new information about specific protein–lipid interactions. Tightly bound lipids in membrane protein structures are described and general principles of the binding interactions are deduced. Lipid binding is stabilized by multiple non-covalent interactions from protein residues to lipid head groups and hydrophobic tails. Distinct lipid-binding motifs have been identified for lipids with defined head groups in membrane protein structures. The stabilizing interactions differ between the electropositive and electronegative membrane sides. The importance of lipid binding for vertical positioning and tight integration of proteins in the membrane, for assembly and stabilization of oligomeric and multisubunit complexes, for supercomplexes, as well as for functional roles are pointed out.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Baldrich, Marcus y Werner Goebel. "Rapid and efficient site-specific mutagenesis". "Protein Engineering, Design and Selection" 3, n.º 6 (1990): 563. http://dx.doi.org/10.1093/protein/3.6.563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Parsons, Helen L., John C. Earnshaw, Jane Wilton, Kevin S. Johnson, Paula A. Schueler, Walt Mahoney y John McCafferty. "Directing phage selections towards specific epitopes". "Protein Engineering, Design and Selection" 9, n.º 11 (1996): 1043–49. http://dx.doi.org/10.1093/protein/9.11.1043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jongen-Rêlo, Ana L. y Joram Feldon. "Specific neuronal protein". Physiology & Behavior 76, n.º 4-5 (agosto de 2002): 449–56. http://dx.doi.org/10.1016/s0031-9384(02)00732-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Prasad Bahadur, Ranjit, Pinak Chakrabarti, Francis Rodier y Joël Janin. "A Dissection of Specific and Non-specific Protein–Protein Interfaces". Journal of Molecular Biology 336, n.º 4 (febrero de 2004): 943–55. http://dx.doi.org/10.1016/j.jmb.2003.12.073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kusakabe, Takahiro, Kiyohisa Motoki, Yasushi Sugimoto, Yozo Takasaki y Katsuji Hori. "Human aldolase B: liver-specific properties of the isozyme depend on type B isozyme group-specific sequences". "Protein Engineering, Design and Selection" 7, n.º 11 (1994): 1387–93. http://dx.doi.org/10.1093/protein/7.11.1387.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tindbaek, Nikolaj, Allan Svendsen, Peter Rahbek Oestergaard y Henriette Draborg. "Engineering a substrate‐specific cold‐adapted subtilisin". Protein Engineering, Design and Selection 17, n.º 2 (febrero de 2004): 149–56. http://dx.doi.org/10.1093/protein/gzh019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kumar, Challa V., Apinya Buranaprapuk y Jyotsna Thota. "Protein scissors: Photocleavage of proteins at specific locations". Journal of Chemical Sciences 114, n.º 6 (diciembre de 2002): 579–92. http://dx.doi.org/10.1007/bf02708852.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Paoni, Nicholas F., Alice M. Chow, Luis C. Peña, Bruce A. Keyt, Mark J. Zoller y William F. Bennett. "Making tissue-type plasminogen activator more fibrin specific". "Protein Engineering, Design and Selection" 6, n.º 5 (1993): 529–34. http://dx.doi.org/10.1093/protein/6.5.529.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Wingfield, Paul T., Robert J. Mattaliano, H. Robson MacDonald, Stewart Craig, G. Marius Clore, Angela M. Gronenborn y Ursula Schmeissner. "Recombinant-derived interleukin-1α stabilized against specific deamidation". "Protein Engineering, Design and Selection" 1, n.º 5 (1987): 413–17. http://dx.doi.org/10.1093/protein/1.5.413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Richter, Susanne A., Kay Stubenrauch, Hauke Lilie y Rainer Rudolph. "Polyionic fusion peptides function as specific dimerization motifs". Protein Engineering, Design and Selection 14, n.º 10 (octubre de 2001): 775–83. http://dx.doi.org/10.1093/protein/14.10.775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nyikos, Lajos, Ágnes Simon, Péter Barabás y Julianna Kardos. "Ligand-specific conformations of an ionotropic glutamate receptor". Protein Engineering, Design and Selection 15, n.º 9 (septiembre de 2002): 717–20. http://dx.doi.org/10.1093/protein/15.9.717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Jäger, Marcus, Xavier Michalet y Shimon Weiss. "Protein-protein interactions as a tool for site-specific labeling of proteins". Protein Science 14, n.º 8 (agosto de 2005): 2059–68. http://dx.doi.org/10.1110/ps.051384705.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jonczyk, P. y A. Nowicka. "Specific in vivo protein-protein interactions between Escherichia coli SOS mutagenesis proteins." Journal of bacteriology 178, n.º 9 (1996): 2580–85. http://dx.doi.org/10.1128/jb.178.9.2580-2585.1996.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Lawrence, David S. y Jinkui Niu. "Protein Kinase InhibitorsThe Tyrosine-Specific Protein Kinases". Pharmacology & Therapeutics 77, n.º 2 (febrero de 1998): 81–114. http://dx.doi.org/10.1016/s0163-7258(97)00052-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Schmid, Stefan W., Waldemar Uhl, Anne Steinle, Bettina Rau, Christian Seiler y Markus W. Büchler. "Human pancreas-specific protein". International Journal of Pancreatology 19, n.º 3 (junio de 1996): 165–70. http://dx.doi.org/10.1007/bf02787364.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Stein, Richard A. "Protein-Specific Discovery Strategies". Genetic Engineering & Biotechnology News 34, n.º 6 (15 de marzo de 2014): 1, 12, 13, 15. http://dx.doi.org/10.1089/gen.34.06.01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Parekh, R. B. "Site-specific protein glycosylation". Advanced Drug Delivery Reviews 13, n.º 3 (marzo de 1994): 251–66. http://dx.doi.org/10.1016/0169-409x(94)90014-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ebke, Lindsey A., Satyabrata Sinha, Gayle J. T. Pauer y Stephanie A. Hagstrom. "Photoreceptor Compartment-Specific TULP1 Interactomes". International Journal of Molecular Sciences 22, n.º 15 (28 de julio de 2021): 8066. http://dx.doi.org/10.3390/ijms22158066.

Texto completo
Resumen
Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

De Rosa, Lucia, Aitziber L. Cortajarena, Alessandra Romanelli, Lynne Regan y Luca Domenico D'Andrea. "Site-specific protein double labeling by expressed protein ligation: applications to repeat proteins". Org. Biomol. Chem. 10, n.º 2 (2012): 273–80. http://dx.doi.org/10.1039/c1ob06397a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Baldwin, Jack E., Stephen L. Martin y John D. Sutherland. "Site-specific forced misincorporation mutagenesis using modified T7 DNA polymerase". "Protein Engineering, Design and Selection" 4, n.º 5 (1991): 579–84. http://dx.doi.org/10.1093/protein/4.5.579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Casey, J. L., A. M. Sanalla, D. Tamvakis, C. Thalmann, E. L. Carroll, K. Parisi, A. M. Coley et al. "Peptides specific for Mycobacterium avium subspecies paratuberculosis infection: diagnostic potential". Protein Engineering Design and Selection 24, n.º 8 (13 de junio de 2011): 589–96. http://dx.doi.org/10.1093/protein/gzr026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Daffu, Gurdip K., Patricia Lopez, Francine Katz, Michael Vinogradov, Chang-Guo Zhan, Donald W. Landry y Joanne Macdonald. "Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification". Protein Engineering Design and Selection 28, n.º 11 (4 de agosto de 2015): 501–6. http://dx.doi.org/10.1093/protein/gzv036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nicholson, Thomas B. y Clifford P. Stanners. "Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors". Journal of Cell Biology 175, n.º 4 (13 de noviembre de 2006): 647–59. http://dx.doi.org/10.1083/jcb.200605001.

Texto completo
Resumen
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin–ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Stolarski, Ryszard. "Thermodynamics of specific protein-RNA interactions." Acta Biochimica Polonica 50, n.º 2 (30 de junio de 2003): 297–318. http://dx.doi.org/10.18388/abp.2003_3688.

Texto completo
Resumen
Description of the recognition specificity between proteins and nucleic acids at the level of molecular interactions is one of the most challenging tasks in biophysics. It is key to understanding the course and control of gene expression and to the application of the thus acquired knowledge in chemotherapy. This review presents experimental results of thermodynamic studies and a discussion of the role of thermodynamics in formation and stability of functional protein-RNA complexes, with a special attention to the interactions involving mRNA 5' cap and cap-binding proteins in the initiation of protein biosynthesis in the eukaryotic cell. A theoretical framework for analysis of the thermodynamic parameters of protein-nucleic acid association is also briefly surveyed. Overshadowed by more spectacular achievements in structural studies, the thermodynamic investigations are of equal importance for full comprehension of biopolymers' activity in a quantitative way. In this regard, thermodynamics gives a direct insight into the energetic and entropic characteristics of complex macromolecular systems in their natural environment, aqueous solution, and thus complements the structural view derived from X-ray crystallography and multidimensional NMR. Further development of the thermodynamic approach toward interpretation of recognition and binding specificity in terms of molecular biophysics requires more profound contribution from statistical mechanics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Nalawansha, Dhanusha A., Ke Li, John Hines y Craig M. Crews. "Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation". Journal of the American Chemical Society 144, n.º 12 (21 de marzo de 2022): 5594–605. http://dx.doi.org/10.1021/jacs.2c00874.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Rose, Megan L. H. y Maxwell T. Hincke. "Protein constituents of the eggshell: eggshell-specific matrix proteins". Cellular and Molecular Life Sciences 66, n.º 16 (19 de mayo de 2009): 2707–19. http://dx.doi.org/10.1007/s00018-009-0046-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Glover, Claiborne V. C. "Sequence-specific protein-DNA recognition by transcriptional regulatory proteins". Plant Molecular Biology Reporter 7, n.º 3 (agosto de 1989): 183–208. http://dx.doi.org/10.1007/bf02668686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Löwenadler, B., B. Nilsson, L. Abrahmsén, T. Moks, L. Ljungqvist, E. Holmgren, S. Paleus, S. Josephson, L. Philipson y M. Uhlén. "Production of specific antibodies against protein A fusion proteins." EMBO Journal 5, n.º 9 (septiembre de 1986): 2393–98. http://dx.doi.org/10.1002/j.1460-2075.1986.tb04509.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Hemler, Martin E. "Specific tetraspanin functions". Journal of Cell Biology 155, n.º 7 (24 de diciembre de 2001): 1103–8. http://dx.doi.org/10.1083/jcb.200108061.

Texto completo
Resumen
Relatively little attention has been given to the large family of abundantly expressed transmembrane proteins known as tetraspanins. Now, the importance of tetraspanins is strongly supported by emerging genetic evidence, coupled with new insights into the biochemistry and functions of tetraspanin protein complexes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Dan, Feng y Zeng Zong-Hao. "Specific and Non-Specific Contacts in Protein Crystals". Protein & Peptide Letters 11, n.º 4 (1 de agosto de 2004): 361–66. http://dx.doi.org/10.2174/0929866043406959.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Janin, Joël. "Specific versus non-specific contacts in protein crystals". Nature Structural Biology 4, n.º 12 (diciembre de 1997): 973–74. http://dx.doi.org/10.1038/nsb1297-973.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Gentzsch, Martina y Widmar Tanner. "Protein-O-glycosylation in yeast: protein-specific mannosyltransferases". Glycobiology 7, n.º 4 (1997): 481–86. http://dx.doi.org/10.1093/glycob/7.4.481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lyons, Alan, David J. King, Raymond J. Owens, Geoffrey T. Yarranton, Andrew Millican, Nigel R. Whittle y John R. Adair. "Site-specific attachment to recombinant antibodies via introduced surface cysteine residues". "Protein Engineering, Design and Selection" 3, n.º 8 (1990): 703–8. http://dx.doi.org/10.1093/protein/3.8.703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Hong, S. H., Q. Hao y W. Maret. "Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein". Protein Engineering, Design and Selection 18, n.º 6 (23 de mayo de 2005): 255–63. http://dx.doi.org/10.1093/protein/gzi031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Milovnik, P., D. Ferrari, C. A. Sarkar y A. Pluckthun. "Selection and characterization of DARPins specific for the neurotensin receptor 1". Protein Engineering Design and Selection 22, n.º 6 (22 de abril de 2009): 357–66. http://dx.doi.org/10.1093/protein/gzp011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Koide, A., J. Wojcik, R. N. Gilbreth, A. Reichel, J. Piehler y S. Koide. "Accelerating phage-display library selection by reversible and site-specific biotinylation". Protein Engineering Design and Selection 22, n.º 11 (8 de septiembre de 2009): 685–90. http://dx.doi.org/10.1093/protein/gzp053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Arai, Tomonori, Masayoshi Uehata, Hiroyuki Akatsuka y Tsutomu Kamiyama. "A quantitative analysis to unveil specific binding proteins for bioactive compounds". Protein Engineering, Design and Selection 26, n.º 4 (23 de diciembre de 2012): 249–54. http://dx.doi.org/10.1093/protein/gzs103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Hanioka, Nobumitsu, Kenneth Korzekwa y Frank J. Gonzalez. "Sequence requirements for cytochromes P450IIA1 and P450IIA2 catalytic activity: evidence for both specific and non-specific substrate binding interactions through use of chimeric cDNAs and cDNA expression". "Protein Engineering, Design and Selection" 3, n.º 7 (1990): 571–75. http://dx.doi.org/10.1093/protein/3.7.571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wouters-Tyrou, D., A. Martin-Ponthieu, N. Ledoux-Andula, M. Kouach, M. Jaquinod, J. A. Subirana y P. Sautière. "Squid spermiogenesis: molecular characterization of testis-specific pro-protamines". Biochemical Journal 309, n.º 2 (15 de julio de 1995): 529–34. http://dx.doi.org/10.1042/bj3090529.

Texto completo
Resumen
Cuttlefish spermiogenesis is characterized by a two-step nuclear protein transition: histones-->spermatid-specific protein (protein T)-->sperm protamine (protein Sp). A similar situation can be observed in another Cephalopod species, the squid Loligo pealeii. The protein T from Loligo consists of two structural variants, T1 and T2 (molecular masses: 10788 and 10791 Da respectively), phosphorylated to different degrees (2-6 phosphate groups). The primary structures of these two variants and of the protamine variant Sp2 were established from sequence analysis and mass spectrometric data of the proteins and their fragments. T1 and T2 are closely related proteins of 79 residues. The complete structural identity of the C-terminal domain (residues 22-79) of protein T2 with the sperm protamine Sp2 (molecular mass 8562 Da, 58 residues) strongly suggests that the testis-specific protein T2 is indeed the precursor of the protamine. The transition between the precursor protein T and protein Sp results from a hydrolytic cleavage similar to that found in many proteins that are synthesized as precursors. The processing mechanism involves the specific cleavage of a Gly-Arg bond in the sequence Met/Leu18-Lys-Gly-Gly-Arg-Arg23. Furthermore, the study provides molecular evidence on the taxonomic relationship between Loligo and Sepia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Best, Robert B., Wenwei Zheng y Jeetain Mittal. "Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association". Journal of Chemical Theory and Computation 10, n.º 11 (16 de octubre de 2014): 5113–24. http://dx.doi.org/10.1021/ct500569b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Jonczyk, Piotr, Adrianna Nowicka y Iwona J. Fijalkowska. "P III B.4 Specific protein-protein interactions between E. coll DNA replication proteins". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 379, n.º 1 (septiembre de 1997): S22. http://dx.doi.org/10.1016/s0027-5107(97)82666-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Strandmann, E. P. v., C. Zoidl, H. Nakhei, B. Holewa, R. P. v. Strandmann, P. Lorenz, L. Klein-Hitpass y G. U. Ryffel. "A highly specific and sensitive monoclonal antibody detecting histidine-tagged recombinant proteins". Protein Engineering Design and Selection 8, n.º 7 (1 de julio de 1995): 733–35. http://dx.doi.org/10.1093/protein/8.7.733.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Shukla, G. S. y D. N. Krag. "Cancer cell-specific internalizing ligands from phage displayed -lactamase-peptide fusion libraries". Protein Engineering Design and Selection 23, n.º 6 (10 de marzo de 2010): 431–40. http://dx.doi.org/10.1093/protein/gzq013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Nisbet, R. M., J. Nigro, K. Breheney, J. Caine, M. K. Hattarki y S. D. Nuttall. "Central amyloid- -specific single chain variable fragment ameliorates A aggregation and neurotoxicity". Protein Engineering Design and Selection 26, n.º 10 (13 de junio de 2013): 571–80. http://dx.doi.org/10.1093/protein/gzt025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Barinka, Cyril, Jakub Ptacek, Antonia Richter, Zora Novakova, Volker Morath y Arne Skerra. "Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA)". Protein Engineering Design and Selection 29, n.º 3 (21 de enero de 2016): 105–15. http://dx.doi.org/10.1093/protein/gzv065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Gunneriusson, E., K. Nord, M. Uhlén y P. Å. Nygren. "Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling". Protein Engineering, Design and Selection 12, n.º 10 (octubre de 1999): 873–78. http://dx.doi.org/10.1093/protein/12.10.873.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Gould, Christine y Chung F. Wong. "Designing specific protein kinase inhibitors:". Pharmacology & Therapeutics 93, n.º 2-3 (febrero de 2002): 169–78. http://dx.doi.org/10.1016/s0163-7258(02)00186-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía