Literatura académica sobre el tema "Spatiotemporal granularitie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Spatiotemporal granularitie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Spatiotemporal granularitie"
Timko, Igor, Michael Böhlen y Johann Gamper. "Sequenced spatiotemporal aggregation for coarse query granularities". VLDB Journal 20, n.º 5 (8 de septiembre de 2011): 721–41. http://dx.doi.org/10.1007/s00778-011-0247-5.
Texto completoJiang, Man, Qilong Han, Haitao Zhang y Hexiang Liu. "Spatiotemporal Data Prediction Model Based on a Multi-Layer Attention Mechanism". International Journal of Data Warehousing and Mining 19, n.º 2 (16 de enero de 2023): 1–15. http://dx.doi.org/10.4018/ijdwm.315822.
Texto completoWang, Pengyuan, Xiao Huang, Joseph Mango, Di Zhang, Dong Xu y Xiang Li. "A Hybrid Population Distribution Prediction Approach Integrating LSTM and CA Models with Micro-Spatiotemporal Granularity: A Case Study of Chongming District, Shanghai". ISPRS International Journal of Geo-Information 10, n.º 8 (13 de agosto de 2021): 544. http://dx.doi.org/10.3390/ijgi10080544.
Texto completoKragh-Furbo, Mette y Gordon Walker. "Electricity as (Big) Data: Metering, spatiotemporal granularity and value". Big Data & Society 5, n.º 1 (enero de 2018): 205395171875725. http://dx.doi.org/10.1177/2053951718757254.
Texto completoKupfer, John A., Zhenlong Li, Huan Ning y Xiao Huang. "Using Mobile Device Data to Track the Effects of the COVID-19 Pandemic on Spatiotemporal Patterns of National Park Visitation". Sustainability 13, n.º 16 (20 de agosto de 2021): 9366. http://dx.doi.org/10.3390/su13169366.
Texto completoMa, Jun, Yuexiong Ding, Vincent J. L. Gan, Changqing Lin y Zhiwei Wan. "Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities Using IDW-BLSTM". IEEE Access 7 (2019): 107897–907. http://dx.doi.org/10.1109/access.2019.2932445.
Texto completoOttaviano, Flavia, Fabing Cui y Andy H. F. Chow. "Modeling and Data Fusion of Dynamic Highway Traffic". Transportation Research Record: Journal of the Transportation Research Board 2644, n.º 1 (enero de 2017): 92–99. http://dx.doi.org/10.3141/2644-11.
Texto completoWang, Ruxin, Hongyan Wu, Yongsheng Wu, Jing Zheng y Ye Li. "Improving influenza surveillance based on multi-granularity deep spatiotemporal neural network". Computers in Biology and Medicine 134 (julio de 2021): 104482. http://dx.doi.org/10.1016/j.compbiomed.2021.104482.
Texto completoChen, F., C. Jing, H. Zhang y X. Lv. "WIFI LOG-BASED STUDENT BEHAVIOR ANALYSIS AND VISUALIZATION SYSTEM". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022 (2 de junio de 2022): 493–99. http://dx.doi.org/10.5194/isprs-archives-xliii-b4-2022-493-2022.
Texto completoJian, Yang, Jinhong Li, Lu Wei, Lei Gao y Fuqi Mao. "Spatiotemporal DeepWalk Gated Recurrent Neural Network: A Deep Learning Framework for Traffic Learning and Forecasting". Journal of Advanced Transportation 2022 (18 de abril de 2022): 1–11. http://dx.doi.org/10.1155/2022/4260244.
Texto completoTesis sobre el tema "Spatiotemporal granularitie"
POZZANI, Gabriele. "Modeling and querying spatio-temporal clinical databases with multiple granularities". Doctoral thesis, 2011. http://hdl.handle.net/11562/351591.
Texto completoIn several research fields, temporal, spatial, and spatio-temporal data have to be managed and queried with several purposes. These data are usually composed by classical data enriched with a temporal and/or a spatial qualification. For instance, in epidemiology spatio-temporal data may represent surveillance data, origins of disease and outbreaks, and risk factors. In order to better exploit the time and spatial dimensions, spatio-temporal data could be managed considering their spatio-temporal dimensions as meta-data useful to retrieve information. One way to manage spatio-temporal dimensions is by using spatio-temporal granularities. This dissertation aims to show how this is possible, in particular for epidemiological spatio-temporal data. For this purpose, in this thesis we propose a framework for the definition of spatio-temporal granularities (i.e., partitions of a spatio-temporal dimension) with the aim to improve the management and querying of spatio-temporal data. The framework includes the theoretical definitions of spatial and spatio-temporal granularities (while for temporal granularities we refer to the framework proposed by Bettini et al.) and all related notions useful for their management, e.g., relationships and operations over granularities. Relationships are useful for relating granularities and then knowing how data associated with different granularities can be compared. Operations allow one to create new granularities from already defined ones, manipulating or selecting their components. We show how granularities can be represented in a database and can be used to enrich an existing spatio-temporal database. For this purpose, we conceptually and logically design a relational database for temporal, spatial, and spatio-temporal granularities. The database stores all data about granularities and their related information we defined in the theoretical framework. This database can be used for enriching other spatio-temporal databases with spatio-temporal granularities. We introduce the spatio-temporal psychiatric case register, developed by the Verona Community-based Psychiatric Service (CPS), for storing and managing information about psychiatric patient, their personal information, and their contacts with the CPS occurred in last 30 years. The case register includes both clinical and statistical information about contacts, that are also temporally and spatially qualified. We show how the case register database can be enriched with spatio-temporal granularities both extending its structure and introducing a spatio-temporal query language dealing with spatio-temporal data and spatio-temporal granularities. Thus, we propose a new spatio-temporal query language, by defining its syntax and semantics, that includes ad-hoc features and constructs for dealing with spatio-temporal granularities. Finally, using the proposed query language, we report several examples of spatio-temporal queries on the psychiatric case register showing the ``usage'' of granularities and their role in spatio-temporal queries useful for epidemiological studies.
Silva, Ricardo Almeida. "Enhancing Exploratory Analysis across Multiple Levels of Detail of Spatiotemporal Events". Doctoral thesis, 2017. http://hdl.handle.net/10362/23002.
Texto completoCapítulos de libros sobre el tema "Spatiotemporal granularitie"
Garcia-Consuegra, Jesús D. "An OO Methodology Based on the Unified Process for GIS Application Development". En Practicing Software Engineering in the 21st Century, 195–209. IGI Global, 2003. http://dx.doi.org/10.4018/978-1-93177-750-6.ch014.
Texto completoActas de conferencias sobre el tema "Spatiotemporal granularitie"
Chen, Muhao, Shi Gao y X. Sean Wang. "Converting spatiotemporal data Among heterogeneous granularity systems". En 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016. http://dx.doi.org/10.1109/fuzz-ieee.2016.7737795.
Texto completoChen, Muhao, Shi Gao, Jingheng Zhou y X. Sean Wang. "Converting spatiotemporal data among multiple granularity systems". En SAC 2016: Symposium on Applied Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851613.2851893.
Texto completoAraújo, Felipe, Denis Rosário y Eduardo Cerqueira. "Spatiotemporal Analysis of a Location Based Social Network Dataset based on Different Levels of Granularity". En LANC '18: Latin America Networking Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3277103.3277137.
Texto completo