Literatura académica sobre el tema "Sparse Accelerator"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Sparse Accelerator".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Sparse Accelerator"
Xie, Xiaoru, Mingyu Zhu, Siyuan Lu y Zhongfeng Wang. "Efficient Layer-Wise N:M Sparse CNN Accelerator with Flexible SPEC: Sparse Processing Element Clusters". Micromachines 14, n.º 3 (24 de febrero de 2023): 528. http://dx.doi.org/10.3390/mi14030528.
Texto completoLi, Yihang. "Sparse-Aware Deep Learning Accelerator". Highlights in Science, Engineering and Technology 39 (1 de abril de 2023): 305–10. http://dx.doi.org/10.54097/hset.v39i.6544.
Texto completoXu, Jia, Han Pu y Dong Wang. "Sparse Convolution FPGA Accelerator Based on Multi-Bank Hash Selection". Micromachines 16, n.º 1 (27 de diciembre de 2024): 22. https://doi.org/10.3390/mi16010022.
Texto completoZheng, Yong, Haigang Yang, Yiping Jia y Zhihong Huang. "PermLSTM: A High Energy-Efficiency LSTM Accelerator Architecture". Electronics 10, n.º 8 (8 de abril de 2021): 882. http://dx.doi.org/10.3390/electronics10080882.
Texto completoYavits, Leonid y Ran Ginosar. "Accelerator for Sparse Machine Learning". IEEE Computer Architecture Letters 17, n.º 1 (1 de enero de 2018): 21–24. http://dx.doi.org/10.1109/lca.2017.2714667.
Texto completoTeodorovic, Predrag y Rastislav Struharik. "Hardware Acceleration of Sparse Oblique Decision Trees for Edge Computing". Elektronika ir Elektrotechnika 25, n.º 5 (6 de octubre de 2019): 18–24. http://dx.doi.org/10.5755/j01.eie.25.5.24351.
Texto completoVranjkovic, Vuk, Predrag Teodorovic y Rastislav Struharik. "Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models". Electronics 11, n.º 8 (8 de abril de 2022): 1178. http://dx.doi.org/10.3390/electronics11081178.
Texto completoGowda, Kavitha Malali Vishveshwarappa, Sowmya Madhavan, Stefano Rinaldi, Parameshachari Bidare Divakarachari y Anitha Atmakur. "FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization". Electronics 11, n.º 10 (22 de mayo de 2022): 1653. http://dx.doi.org/10.3390/electronics11101653.
Texto completoDey, Sumon, Lee Baker, Joshua Schabel, Weifu Li y Paul D. Franzon. "A Scalable Cluster-based Hierarchical Hardware Accelerator for a Cortically Inspired Algorithm". ACM Journal on Emerging Technologies in Computing Systems 17, n.º 4 (30 de junio de 2021): 1–29. http://dx.doi.org/10.1145/3447777.
Texto completoLiu, Sheng, Yasong Cao y Shuwei Sun. "Mapping and Optimization Method of SpMV on Multi-DSP Accelerator". Electronics 11, n.º 22 (11 de noviembre de 2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Texto completoTesis sobre el tema "Sparse Accelerator"
Syed, Akber. "A Hardware Interpreter for Sparse Matrix LU Factorization". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521.
Texto completoJamal, Aygul. "A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS269/document.
Texto completoIn this PhD thesis, we address three challenges faced by linear algebra solvers in the perspective of future exascale systems: accelerating convergence using innovative techniques at the algorithm level, taking advantage of GPU (Graphics Processing Units) accelerators to enhance the performance of computations on hybrid CPU/GPU systems, evaluating the impact of errors in the context of an increasing level of parallelism in supercomputers. We are interested in studying methods that enable us to accelerate convergence and execution time of iterative solvers for large sparse linear systems. The solver specifically considered in this work is the parallel Algebraic Recursive Multilevel Solver (pARMS), which is a distributed-memory parallel solver based on Krylov subspace methods.First we integrate a randomization technique referred to as Random Butterfly Transformations (RBT) that has been successfully applied to remove the cost of pivoting in the solution of dense linear systems. Our objective is to apply this method in the ARMS preconditioner to solve more efficiently the last Schur complement system in the application of the recursive multilevel process in pARMS. The experimental results show an improvement of the convergence and the accuracy. Due to memory concerns for some test problems, we also propose to use a sparse variant of RBT followed by a sparse direct solver (SuperLU), resulting in an improvement of the execution time.Then we explain how a non intrusive approach can be applied to implement GPU computing into the pARMS solver, more especially for the local preconditioning phase that represents a significant part of the time to compute the solution. We compare the CPU-only and hybrid CPU/GPU variant of the solver on several test problems coming from physical applications. The performance results of the hybrid CPU/GPU solver using the ARMS preconditioning combined with RBT, or the ILU(0) preconditioning, show a performance gain of up to 30% on the test problems considered in our experiments.Finally we study the effect of soft fault errors on the convergence of the commonly used flexible GMRES (FGMRES) algorithm which is also used to solve the preconditioned system in pARMS. The test problem in our experiments is an elliptical PDE problem on a regular grid. We consider two types of preconditioners: an incomplete LU factorization with dual threshold (ILUT), and the ARMS preconditioner combined with RBT randomization. We consider two soft fault error modeling approaches where we perturb the matrix-vector multiplication and the application of the preconditioner, and we compare their potential impact on the convergence of the solver
Pradels, Léo. "Efficient CNN inference acceleration on FPGAs : a pattern pruning-driven approach". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS087.
Texto completoCNN-based deep learning models provide state-of-the-art performance in image and video processing tasks, particularly for image enhancement or classification. However, these models are computationally and memory-intensive, making them unsuitable for real-time constraints on embedded FPGA systems. As a result, compressing these CNNs and designing accelerator architectures for inference that integrate compression in a hardware-software co-design approach is essential. While software optimizations like pruning have been proposed, they often lack the structured approach needed for effective accelerator integration. To address these limitations, this thesis focuses on accelerating CNNs on FPGAs while complying with real-time constraints on embedded systems. This is achieved through several key contributions. First, it introduces pattern pruning, which imposes structure on network sparsity, enabling efficient hardware acceleration with minimal accuracy loss due to compression. Second, a scalable accelerator for CNN inference is presented, which adapts its architecture based on input performance criteria, FPGA specifications, and target CNN model architecture. An efficient method for integrating pattern pruning within the accelerator and a complete flow for CNN acceleration are proposed. Finally, improvements in network compression are explored through Shift&Add quantization, which modifies FPGA computation methods while maintaining baseline network accuracy
Ramachandran, Shridhar. "Incremental PageRank acceleration using Sparse Matrix-Sparse Vector Multiplication". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462894358.
Texto completoFernández, Becerra David. "Multicore acceleration of sparse electromagnetics computations". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104641.
Texto completoLes processeurs multicœurs sont devenus la tendance dominante de l'industrie pour accroître la performance des systèmes informatiques, forçant les concepteurs de systèmes électromagnétiques (EM) à reconcevoir leurs applications en utilisant des paradigmes de programmation parallèle. Cela est particulièrement vrai pour les calculs impliquant des structures de données complexes comme les calculs de matrices creuses qui surviennent souvent dans des simulations électromagnétiques (EM) avec la méthode d'analyse par éléments finis (FÉM). Ces calculs nécessitent de manipulation de pointeurs qui rendent inutiles de nombreuses optimisations du compilateur et les bibliothèques de mémoire partagée parallèle (OpenMP, par exemple). Ce travail présente de nouvelles structures de données rares et de nouvelles techniques afin d'exploiter efficacement le parallélisme multicœur et les unités de vecteur court (dont le dernier n'a pas été exploité par des bibliothèques de matrices creuses à la fine pointe de la technologie) pour les noyaux de calcul intensif récurrents dans les simulations EM, tels que les multiplications matrice-vecteur rares (SMVM) et des algorithmes à gradient conjugué (CG). Des performances d'accélérations jusqu'à 14 fois supérieures sont démontrées pour le noyau accéléré par SMVM et jusqu'à 5,8 fois supérieures pour le noyau CG en utilisant les méthodes proposées par rapport aux approches conventionnelles pour deux architectures multicœurs différentes. Enfin, une nouvelle méthode pour résoudre la FÉM pour le traitement parallèle est présentée et une implantation optimisée est réalisée sur deux générations d'accélérateurs de GPU NVIDIA (multicœur) avec des augmentations de performances allant jusqu'à 27,53 fois par rapport aux résultats du CPU optimisé par compilateur.
Grigoras, Paul. "Instance directed tuning for sparse matrix kernels on reconfigurable accelerators". Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/62634.
Texto completoSegura, Salvador Albert. "High-performance and energy-efficient irregular graph processing on GPU architectures". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671449.
Texto completoEl processament de grafs és un domini prominent i establert com a la base de noves aplicacions emergents en àrees com l'anàlisi de dades i Machine Learning, que permeten aplicacions com ara navegació per carretera, xarxes socials i reconeixement automàtic de veu. La gran quantitat de dades emprades en aquests dominis requereix d’arquitectures d’alt rendiment, com ara GPGPU. Tot i que el processament de grans càrregues de treball basades en grafs presenta un alt grau de paral·lelisme, els patrons d’accés a la memòria tendeixen a ser irregulars, fet que redueix l’eficiència a causa de la divergència d’accessos a memòria. Per tal de millorar aquests problemes, les aplicacions de grafs per a GPGPU realitzen operacions de stream compaction que processen nodes/arestes per tal que els passos posteriors funcionin en un conjunt de dades compactat. Proposem deslliurar d’aquesta tasca a la extensió hardware Stream Compaction Unit (SCU) adaptada als requisits d’aquestes operacions, que a més realitza un pre-processament filtrant i reordenant els elements processats.Mostrem que les ineficiències de divergència de memòria prevalen en aplicacions GPGPU basades en grafs irregulars, tot i que trobem que és possible relaxar la relació estricta entre threads i les dades processades per obtenir noves optimitzacions. Com a tal, proposem la Irregular accesses Reorder Unit (IRU), una nova extensió de maquinari integrada al pipeline de la GPU que reordena i filtra les dades processades pels threads en accessos irregulars que milloren la convergència d’accessos a memòria. Finalment, aprofitem els punts forts de les propostes anteriors per aconseguir millores sinèrgiques. Ho fem proposant la IRU-enhanced SCU (ISCU), que utilitza els mecanismes de pre-processament eficients de la IRU per millorar l’eficiència de stream compaction de la SCU i les limitacions de rendiment de NoC a causa de les operacions de pre-processament de la SCU.
Yee, Wai Min. "Cache Design for a Hardware Accelerated Sparse Texture Storage System". Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1197.
Texto completoMantell, Rosemary Genevieve. "Accelerated sampling of energy landscapes". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267990.
Texto completoChen, Dong. "Acceleration of the spatial selective excitation of MRI via sparse approximation". kostenfrei, 2009. https://mediatum2.ub.tum.de/node?id=956913.
Texto completoLibros sobre el tema "Sparse Accelerator"
United States. National Aeronautics and Space Administration., ed. Arc-driven rail accelerator research: Final report. Tuskegee, Ala: Mechanical Engineering Dept., Tuskegee University, 1989.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Arc-driven rail accelerator research: Final report. Tuskegee, Ala: Mechanical Engineering Dept., Tuskegee University, 1989.
Buscar texto completoZana, Lynnette M. Rail accelerators for space transportation: An experimental investigation. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Space Experiments with Particle Accelerators (SEPAC): Final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoBauer, Dominique y Camilla Murgia, eds. Ephemeral Spectacles, Exhibition Spaces and Museums. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463720908.
Texto completoBlanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoBlanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoT, Norfleet William y Lyndon B. Johnson Space Center., eds. Issues on human acceleration tolerance after long-duration space flights. Houston, Texas: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1992.
Buscar texto completoDeLombard, Richard. Quick look report on acceleration measurements on Mir space station during Mir-16. Cleveland, Ohio: NASA Lewis Research Center, 1995.
Buscar texto completoRichard, DeLombard y United States. National Aeronautics and Space Administration., eds. SAMS acceleration measurements on Mir from June to November 1995. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Sparse Accelerator"
Rabbi, Fazlay, Christopher S. Daley, Hasan Metin Aktulga y Nicholas J. Wright. "Evaluation of Directive-Based GPU Programming Models on a Block Eigensolver with Consideration of Large Sparse Matrices". En Accelerator Programming Using Directives, 66–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49943-3_4.
Texto completoWang, Bo, Sheng Ma, Yuan Yuan, Yi Dai, Wei Jiang, Xiang Hou, Xiao Yi y Rui Xu. "SparG: A Sparse GEMM Accelerator for Deep Learning Applications". En Algorithms and Architectures for Parallel Processing, 529–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22677-9_28.
Texto completoAnzalone, Erik, Maurizio Capra, Riccardo Peloso, Maurizio Martina y Guido Masera. "Low-Power Hardware Accelerator for Sparse Matrix Convolution in Deep Neural Network". En Progresses in Artificial Intelligence and Neural Systems, 79–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5093-5_8.
Texto completoMeng, Zhaoteng, Long Xiao, Xiaoyao Gao, Zhan Li, Lin Shu y Jie Hao. "BitHist: A Precision-Scalable Sparse-Awareness DNN Accelerator Based on Bit Slices Products Histogram". En Euro-Par 2023: Parallel Processing, 289–303. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_20.
Texto completoWang, Bo, Sheng Ma, Zhong Liu, Libo Huang, Yuan Yuan y Yi Dai. "SADD: A Novel Systolic Array Accelerator with Dynamic Dataflow for Sparse GEMM in Deep Learning". En Lecture Notes in Computer Science, 42–53. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21395-3_4.
Texto completoAlonso, Daniel. "Data Innovation Spaces". En The Elements of Big Data Value, 211–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68176-0_9.
Texto completoBordry, F., L. Bottura, A. Milanese, D. Tommasini, E. Jensen, Ph Lebrun, L. Tavian et al. "Accelerator Engineering and Technology: Accelerator Technology". En Particle Physics Reference Library, 337–517. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_8.
Texto completoGajurel, Aavaas, Sushil J. Louis, Rui Wu, Lee Barford y Frederick C. Harris. "GPU Acceleration of Sparse Neural Networks". En Advances in Intelligent Systems and Computing, 323–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70416-2_41.
Texto completoPuu, Tönu. "Multiplier-Accelerator Models Revisited". En Economics of Space and Time, 145–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60877-3_8.
Texto completoMaeda, Hiroshi y Daisuke Takahashi. "Parallel Sparse Matrix-Vector Multiplication Using Accelerators". En Computational Science and Its Applications – ICCSA 2016, 3–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42108-7_1.
Texto completoActas de conferencias sobre el tema "Sparse Accelerator"
Koul, Kalhan, Maxwell Strange, Jackson Melchert, Alex Carsello, Yuchen Mei, Olivia Hsu, Taeyoung Kong et al. "Onyx: A Programmable Accelerator for Sparse Tensor Algebra". En 2024 IEEE Hot Chips 36 Symposium (HCS), 1–91. IEEE, 2024. http://dx.doi.org/10.1109/hcs61935.2024.10665150.
Texto completoLai, Yu-Hsuan, Shanq-Jang Ruan, Ming Fang, Edwin Naroska y Jeng-Lun Shieh. "A Throughput-Optimized Accelerator for Submanifold Sparse Convolutional Networks". En 2024 IEEE 13th Global Conference on Consumer Electronics (GCCE), 1010–11. IEEE, 2024. http://dx.doi.org/10.1109/gcce62371.2024.10760758.
Texto completoLi, Zuohao, Yiwan Lai y Hao Zhang. "Energy Efficient FPGA-Based Accelerator for Dynamic Sparse Transformer". En 2024 13th International Conference on Communications, Circuits and Systems (ICCCAS), 7–12. IEEE, 2024. http://dx.doi.org/10.1109/icccas62034.2024.10652850.
Texto completoLuo, Shengbai, Bo Wang, Yihao Shi, Xueyi Zhang, Qingshan Xue y Sheng Ma. "Sparm: A Sparse Matrix Multiplication Accelerator Supporting Multiple Dataflows". En 2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP), 122–30. IEEE, 2024. http://dx.doi.org/10.1109/asap61560.2024.00034.
Texto completoLi, Zhengke, Wendong Mao, Siyu Zhang, Qiwei Dong y Zhongfeng Wang. "An Efficient Sparse Hardware Accelerator for Spike-Driven Transformer". En 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 250–53. IEEE, 2024. https://doi.org/10.1109/apace62360.2024.10877394.
Texto completoMao, Yingchang, Qiang Liu y Ray C. C. Cheung. "MSCA: A Multi-Grained Sparse Convolution Accelerator for DNN Training". En 2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP), 34–35. IEEE, 2024. http://dx.doi.org/10.1109/asap61560.2024.00019.
Texto completoMa, Shenghong, Jinwei Xu, Jingfei Jiang, Yaohua Wang y Dongsheng Li. "Funnel: An Efficient Sparse Attention Accelerator with Multi-Dataflow Fusion". En 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), 1311–18. IEEE, 2024. https://doi.org/10.1109/ispa63168.2024.00176.
Texto completoXu, Xiangzhi, Qi Liu, Wenjin Huang, WenLu Peng y Yihua Huang. "SpGCN: An FPGA-Based Graph Convolutional Network Accelerator for Sparse Graphs". En 2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 216. IEEE, 2024. http://dx.doi.org/10.1109/fccm60383.2024.00037.
Texto completoAnsarmohammadi, Ali, Seyed Ahmad Mirsalari, Reza Hojabr, Mostafa E. Salehi Nasab y M. Hasan Najafi. "BISQ: A Bit-level Sparse Quantized Accelerator For Embedded Deep Neural Networks". En 2024 1st International Conference on Innovative Engineering Sciences and Technological Research (ICIESTR), 1–6. IEEE, 2024. https://doi.org/10.1109/iciestr60916.2024.10798342.
Texto completoFeldmann, Axel, Courtney Golden, Yifan Yang, Joel S. Emer y Daniel Sanchez. "Azul: An Accelerator for Sparse Iterative Solvers Leveraging Distributed On-Chip Memory". En 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO), 643–56. IEEE, 2024. https://doi.org/10.1109/micro61859.2024.00054.
Texto completoInformes sobre el tema "Sparse Accelerator"
Lee, L. Solving Large Sparse Linear Systems in End-to-end Accelerator Structure Simulations. Office of Scientific and Technical Information (OSTI), enero de 2004. http://dx.doi.org/10.2172/826910.
Texto completoGene Golub y Kwok Ko. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling. Office of Scientific and Technical Information (OSTI), marzo de 2009. http://dx.doi.org/10.2172/950471.
Texto completoAndrzejewski, D. Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis. Office of Scientific and Technical Information (OSTI), septiembre de 2011. http://dx.doi.org/10.2172/1026471.
Texto completoGarg, Raveesh, Eric Qin, Francisco Martinez, Robert Guirado, Akshay Jain, Sergi Abadal, Jose Abellan et al. Understanding the Design Space of Sparse/Dense Multiphase Dataflows for Mapping Graph Neural Networks on Spatial Accelerators. Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1821960.
Texto completoKarl, Smith. Space Accelerator Engineering at Los Alamos. Office of Scientific and Technical Information (OSTI), junio de 2024. http://dx.doi.org/10.2172/2377320.
Texto completoOttinger, M. B., T. Tajima y K. Hiramoto. Space charge tracking code for a synchrotron accelerator. Office of Scientific and Technical Information (OSTI), junio de 1997. http://dx.doi.org/10.2172/491621.
Texto completoNguyen, Dinh Cong y John W. Lewellen. High-Power Electron Accelerators for Space (and other) Applications. Office of Scientific and Technical Information (OSTI), mayo de 2016. http://dx.doi.org/10.2172/1291275.
Texto completoKishek, Rami, Santiago Bernal, Timothy Koeth y Irving Haber. Physics of Space Charge for Advanced Accelerators - Closeout Report. Office of Scientific and Technical Information (OSTI), junio de 2015. http://dx.doi.org/10.2172/1186737.
Texto completoOkonechnikov, Konstantin, James Amundson y Alexandru Macridin. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit. Office of Scientific and Technical Information (OSTI), septiembre de 2009. http://dx.doi.org/10.2172/968693.
Texto completoBarnard, J. J. y S. M. Lund. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge. Office of Scientific and Technical Information (OSTI), mayo de 2008. http://dx.doi.org/10.2172/941431.
Texto completo