Siga este enlace para ver otros tipos de publicaciones sobre el tema: Solvable groups.

Artículos de revistas sobre el tema "Solvable groups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Solvable groups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Albrecht, Ulrich. "The construction of $A$-solvable Abelian groups". Czechoslovak Mathematical Journal 44, n.º 3 (1994): 413–30. http://dx.doi.org/10.21136/cmj.1994.128480.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cherlin, Gregory L. y Ulrich Felgner. "Homogeneous Solvable Groups". Journal of the London Mathematical Society s2-44, n.º 1 (agosto de 1991): 102–20. http://dx.doi.org/10.1112/jlms/s2-44.1.102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Atanasov, Risto y Tuval Foguel. "Solitary Solvable Groups". Communications in Algebra 40, n.º 6 (junio de 2012): 2130–39. http://dx.doi.org/10.1080/00927872.2011.574241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sarma, B. K. "Solvable fuzzy groups". Fuzzy Sets and Systems 106, n.º 3 (septiembre de 1999): 463–67. http://dx.doi.org/10.1016/s0165-0114(97)00264-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ray, Suryansu. "Solvable fuzzy groups". Information Sciences 75, n.º 1-2 (diciembre de 1993): 47–61. http://dx.doi.org/10.1016/0020-0255(93)90112-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chen, P. B. y T. S. Wu. "On solvable groups". Mathematische Annalen 276, n.º 1 (marzo de 1986): 43–51. http://dx.doi.org/10.1007/bf01450922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Abobala, Mohammad y Mehmet Celik. "Under Solvable Groups as a Novel Generalization of Solvable Groups". Galoitica: Journal of Mathematical Structures and Applications 2, n.º 1 (2022): 14–20. http://dx.doi.org/10.54216/gjmsa.020102.

Texto completo
Resumen
The objective of this paper is to define a new generalization of solvable groups by using the concept of power maps which generalize the classical concept of powers (exponents). Also, it presents many elementary properties of this new generalization in terms of theorems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

GRUNEWALD, FRITZ, BORIS KUNYAVSKII y EUGENE PLOTKIN. "CHARACTERIZATION OF SOLVABLE GROUPS AND SOLVABLE RADICAL". International Journal of Algebra and Computation 23, n.º 05 (agosto de 2013): 1011–62. http://dx.doi.org/10.1142/s0218196713300016.

Texto completo
Resumen
We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

ZARRIN, MOHAMMAD. "GROUPS WITH FEW SOLVABLE SUBGROUPS". Journal of Algebra and Its Applications 12, n.º 06 (9 de mayo de 2013): 1350011. http://dx.doi.org/10.1142/s0219498813500114.

Texto completo
Resumen
In this paper, we give some sufficient condition on the number of proper solvable subgroups of a group to be nilpotent or solvable. In fact, we show that every group with at most 5 (respectively, 58) proper solvable subgroups is nilpotent (respectively, solvable). Also these bounds cannot be improved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Khazal, R. y N. P. Mukherjee. "A note onp-solvable and solvable finite groups". International Journal of Mathematics and Mathematical Sciences 17, n.º 4 (1994): 821–24. http://dx.doi.org/10.1155/s0161171294001158.

Texto completo
Resumen
The notion of normal index is utilized in proving necessary and sufficient conditions for a groupGto be respectively,p-solvable and solvable wherepis the largest prime divisor of|G|. These are used further in identifying the largest normalp-solvable and normal solvable subgroups, respectively, ofG.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Kirtland, Joseph. "Finite solvable multiprimitive groups". Communications in Algebra 23, n.º 1 (enero de 1995): 335–56. http://dx.doi.org/10.1080/00927879508825224.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Abels, Herbert y Roger Alperin. "Undistorted solvable linear groups". Transactions of the American Mathematical Society 363, n.º 06 (1 de junio de 2011): 3185. http://dx.doi.org/10.1090/s0002-9947-2011-05237-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Rhemtulla, Akbar y Said Sidki. "Factorizable infinite solvable groups". Journal of Algebra 122, n.º 2 (mayo de 1989): 397–409. http://dx.doi.org/10.1016/0021-8693(89)90225-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Vesanen, Ari. "Solvable Groups and Loops". Journal of Algebra 180, n.º 3 (marzo de 1996): 862–76. http://dx.doi.org/10.1006/jabr.1996.0098.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Budkin, A. I. "Dominions in Solvable Groups". Algebra and Logic 54, n.º 5 (noviembre de 2015): 370–79. http://dx.doi.org/10.1007/s10469-015-9358-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Tent, Joan F. "Quadratic rational solvable groups". Journal of Algebra 363 (agosto de 2012): 73–82. http://dx.doi.org/10.1016/j.jalgebra.2012.04.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Timoshenko, E. I. "Universally equivalent solvable groups". Algebra and Logic 39, n.º 2 (marzo de 2000): 131–38. http://dx.doi.org/10.1007/bf02681667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Yang y Zi Qun Lu. "Solvable D 2-groups". Acta Mathematica Sinica, English Series 33, n.º 1 (15 de agosto de 2016): 77–95. http://dx.doi.org/10.1007/s10114-016-5353-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Tyutyunov, V. N. "Characterization ofr-solvable groups". Siberian Mathematical Journal 41, n.º 1 (enero de 2000): 180–87. http://dx.doi.org/10.1007/bf02674008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

CHIODO, MAURICE. "FINITELY ANNIHILATED GROUPS". Bulletin of the Australian Mathematical Society 90, n.º 3 (13 de junio de 2014): 404–17. http://dx.doi.org/10.1017/s0004972714000355.

Texto completo
Resumen
AbstractIn 1976, Wiegold asked if every finitely generated perfect group has weight 1. We introduce a new property of groups, finitely annihilated, and show that this might be a possible approach to resolving Wiegold’s problem. For finitely generated groups, we show that in several classes (finite, solvable, free), being finitely annihilated is equivalent to having noncyclic abelianisation. However, we also construct an infinite family of (finitely presented) finitely annihilated groups with cyclic abelianisation. We apply our work to show that the weight of a nonperfect finite group, or a nonperfect finitely generated solvable group, is the same as the weight of its abelianisation. This recovers the known partial results on the Wiegold problem: a finite (or finitely generated solvable) perfect group has weight 1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sardar, Pranab. "Packing subgroups in solvable groups". International Journal of Algebra and Computation 25, n.º 05 (agosto de 2015): 917–26. http://dx.doi.org/10.1142/s0218196715500253.

Texto completo
Resumen
We show that any subgroup of a (virtually) nilpotent-by-polycyclic group satisfies the bounded packing property of Hruska–Wise [Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009) 1945–1988]. In particular, the same is true for all finitely generated subgroups of metabelian groups and linear solvable groups. However, we find an example of a finitely generated solvable group of derived length 3 which admits a finitely generated metabelian subgroup without the bounded packing property. In this example the subgroup is a retract also. Thus we obtain a negative answer to Problem 2.27 of the above paper. On the other hand, we show that polycyclic subgroups of solvable groups satisfy the bounded packing property.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Jafarpour, M., H. Aghabozorgi y B. Davvaz. "Solvable groups derived from hypergroups". Journal of Algebra and Its Applications 15, n.º 04 (19 de febrero de 2016): 1650067. http://dx.doi.org/10.1142/s0219498816500675.

Texto completo
Resumen
In this paper, we introduce the smallest equivalence relation [Formula: see text] on a hypergroup [Formula: see text] such that the quotient [Formula: see text], the set of all equivalence classes, is a solvable group. The characterization of solvable groups via strongly regular relations is investigated and several results on the topic are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Albrecht, Ulrich F. "Extension functors on the category of $A$-solvable abelian groups". Czechoslovak Mathematical Journal 41, n.º 4 (1991): 685–94. http://dx.doi.org/10.21136/cmj.1991.102499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Roman’kov, Vitaly. "Embedding theorems for solvable groups". Proceedings of the American Mathematical Society 149, n.º 10 (28 de julio de 2021): 4133–43. http://dx.doi.org/10.1090/proc/15562.

Texto completo
Resumen
In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group G G lying in a variety M {\mathcal M} can be embedded in a 4 4 -generated group H ∈ M A H \in {\mathcal M}{\mathcal A} ( A {\mathcal A} means the variety of abelian groups). If G G is a finite group, then H H can also be found as a finite group. It follows, that any finitely generated (finite) solvable group G G of the derived length l l can be embedded in a 4 4 -generated (finite) solvable group H H of length l + 1 l+1 . Thus, we answer the question of V. H. Mikaelian and A. Yu. Olshanskii. It is also shown that any countable group G ∈ M G\in {\mathcal M} , such that the abelianization G a b G_{ab} is a free abelian group, is embeddable in a 2 2 -generated group H ∈ M A H\in {\mathcal M}{\mathcal A} .
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Dymarz, Tullia. "Envelopes of certain solvable groups". Commentarii Mathematici Helvetici 90, n.º 1 (2015): 195–224. http://dx.doi.org/10.4171/cmh/351.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Rogers, Pat, Howard Smith y Donald Solitar. "Tarski's Problem for Solvable Groups". Proceedings of the American Mathematical Society 96, n.º 4 (abril de 1986): 668. http://dx.doi.org/10.2307/2046323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Roman’kov, V. A. "Algorithmic theory of solvable groups". Prikladnaya Diskretnaya Matematika, n.º 52 (2021): 16–64. http://dx.doi.org/10.17223/20710410/52/2.

Texto completo
Resumen
The purpose of this survey is to give some picture of what is known about algorithmic and decision problems in the theory of solvable groups. We will provide a number of references to various results, which are presented without proof. Naturally, the choice of the material reported on reflects the author’s interests and many worthy contributions to the field will unfortunately go without mentioning. In addition to achievements in solving classical algorithmic problems, the survey presents results on other issues. Attention is paid to various aspects of modern theory related to the complexity of algorithms, their practical implementation, random choice, asymptotic properties. Results are given on various issues related to mathematical logic and model theory. In particular, a special section of the survey is devoted to elementary and universal theories of solvable groups. Special attention is paid to algorithmic questions regarding rational subsets of groups. Results on algorithmic problems related to homomorphisms, automorphisms, and endomorphisms of groups are presented in sufficient detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Mohammadzadeh, F. y Elahe Mohammadzadeh. "On $\alpha$-solvable fundamental groups". Journal of Algebraic Hyperstructures and Logical Algebras 2, n.º 2 (1 de mayo de 2021): 35–46. http://dx.doi.org/10.52547/hatef.jahla.2.2.35.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

SUZUKI, Michio. "Solvable Generation of Finite Groups". Hokkaido Mathematical Journal 16, n.º 1 (febrero de 1987): 109–13. http://dx.doi.org/10.14492/hokmj/1381517825.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Meierfrankenfeld, Ulrich, Richard E. Phillips y Orazio Puglisi. "Locally Solvable Finitary Linear Groups". Journal of the London Mathematical Society s2-47, n.º 1 (febrero de 1993): 31–40. http://dx.doi.org/10.1112/jlms/s2-47.1.31.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Farrell, F. Thomas y Peter A. Linnell. "K-Theory of Solvable Groups". Proceedings of the London Mathematical Society 87, n.º 02 (septiembre de 2003): 309–36. http://dx.doi.org/10.1112/s0024611503014072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Pál, Hegedus. "Structure of solvable rational groups". Proceedings of the London Mathematical Society 90, n.º 02 (25 de febrero de 2005): 439–71. http://dx.doi.org/10.1112/s0024611504015035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Snow, Dennis M. "Complex orbits of solvable groups". Proceedings of the American Mathematical Society 110, n.º 3 (1 de marzo de 1990): 689. http://dx.doi.org/10.1090/s0002-9939-1990-1028050-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Edidin, Dan y William Graham. "Good representations and solvable groups." Michigan Mathematical Journal 48, n.º 1 (2000): 203–13. http://dx.doi.org/10.1307/mmj/1030132715.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Emmanouil, Ioannis. "Solvable groups and Bass' conjecture". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, n.º 3 (febrero de 1998): 283–87. http://dx.doi.org/10.1016/s0764-4442(97)82981-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

OSIN, D. V. "The entropy of solvable groups". Ergodic Theory and Dynamical Systems 23, n.º 3 (junio de 2003): 907–18. http://dx.doi.org/10.1017/s0143385702000937.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Li, Cai Heng y Lei Wang. "Finite REA-groups are solvable". Journal of Algebra 522 (marzo de 2019): 195–217. http://dx.doi.org/10.1016/j.jalgebra.2018.11.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Deshpande, Tanmay. "Minimal idempotents on solvable groups". Selecta Mathematica 22, n.º 3 (19 de marzo de 2016): 1613–61. http://dx.doi.org/10.1007/s00029-016-0229-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wolter, T. H. "Einstein Metrics on solvable groups". Mathematische Zeitschrift 206, n.º 1 (enero de 1991): 457–71. http://dx.doi.org/10.1007/bf02571355.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

TANAKA, Yasuhiko. "Amalgams of quasithin solvable groups". Japanese journal of mathematics. New series 17, n.º 2 (1991): 203–66. http://dx.doi.org/10.4099/math1924.17.203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Arazy, Jonathan y Harald Upmeier. "Berezin Transform for Solvable Groups". Acta Applicandae Mathematicae 81, n.º 1 (marzo de 2004): 5–28. http://dx.doi.org/10.1023/b:acap.0000024192.68563.8d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

HILLMAN, JONATHAN A. "2-KNOTS WITH SOLVABLE GROUPS". Journal of Knot Theory and Its Ramifications 20, n.º 07 (julio de 2011): 977–94. http://dx.doi.org/10.1142/s021821651100898x.

Texto completo
Resumen
We show that fibered 2-knots with closed fiber the Hantzsche–Wendt flat 3-manifold are not reflexive, while every fibered 2-knot with closed fiber a Nil-manifold with base orbifold S(3, 3, 3) is reflexive. We also determine when the knots are amphicheiral or invertible, and give explicit representatives for the possible meridians (up to automorphisms of the knot group which induce the identity on abelianization) for the groups of all knots in either class. This completes the TOP classification of 2-knots with torsion-free, elementary amenable knot group. In the final section, we show that the only non-trivial doubly null-concordant knots with such groups are those with the group of the 2-twist spin of the knot 946.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Isaacs, I. M. y Geoffrey R. Robinson. "Isomorphic subgroups of solvable groups". Proceedings of the American Mathematical Society 143, n.º 8 (23 de abril de 2015): 3371–76. http://dx.doi.org/10.1090/proc/12534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Rogers, Pat, Howard Smith y Donald Solitar. "Tarski’s problem for solvable groups". Proceedings of the American Mathematical Society 96, n.º 4 (1 de abril de 1986): 668. http://dx.doi.org/10.1090/s0002-9939-1986-0826500-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Garreta, Albert, Alexei Miasnikov y Denis Ovchinnikov. "Diophantine problems in solvable groups". Bulletin of Mathematical Sciences 10, n.º 01 (21 de febrero de 2020): 2050005. http://dx.doi.org/10.1142/s1664360720500058.

Texto completo
Resumen
We study the Diophantine problem (decidability of finite systems of equations) in different classes of finitely generated solvable groups (nilpotent, polycyclic, metabelian, free solvable, etc.), which satisfy some natural “non-commutativity” conditions. For each group [Formula: see text] in one of these classes, we prove that there exists a ring of algebraic integers [Formula: see text] that is interpretable in [Formula: see text] by finite systems of equations ([Formula: see text]-interpretable), and hence that the Diophantine problem in [Formula: see text] is polynomial time reducible to the Diophantine problem in [Formula: see text]. One of the major open conjectures in number theory states that the Diophantine problem in any such [Formula: see text] is undecidable. If true this would imply that the Diophantine problem in any such [Formula: see text] is also undecidable. Furthermore, we show that for many particular groups [Formula: see text] as above, the ring [Formula: see text] is isomorphic to the ring of integers [Formula: see text], so the Diophantine problem in [Formula: see text] is, indeed, undecidable. This holds, in particular, for free nilpotent or free solvable non-abelian groups, as well as for non-abelian generalized Heisenberg groups and uni-triangular groups [Formula: see text]. Then, we apply these results to non-solvable groups that contain non-virtually abelian maximal finitely generated nilpotent subgroups. For instance, we show that the Diophantine problem is undecidable in the groups [Formula: see text].
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Turull, Alexandre. "Character correspondences in solvable groups". Journal of Algebra 295, n.º 1 (enero de 2006): 157–78. http://dx.doi.org/10.1016/j.jalgebra.2005.01.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Myasnikov, A. y N. Romanovskiy. "Krull dimension of solvable groups". Journal of Algebra 324, n.º 10 (noviembre de 2010): 2814–31. http://dx.doi.org/10.1016/j.jalgebra.2010.07.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Isaacs, I. M. "Solvable groups contain large centralizers". Israel Journal of Mathematics 55, n.º 1 (febrero de 1986): 58–64. http://dx.doi.org/10.1007/bf02772695.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Navarro, Gabriel, Alexandre Turull y Thomas R. Wolf. "Block separation in solvable groups". Archiv der Mathematik 85, n.º 4 (octubre de 2005): 293–96. http://dx.doi.org/10.1007/s00013-005-1407-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Crestani, Eleonora y Andrea Lucchini. "Normal coverings of solvable groups". Archiv der Mathematik 98, n.º 1 (29 de noviembre de 2011): 13–18. http://dx.doi.org/10.1007/s00013-011-0341-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía