Libros sobre el tema "Solvable groups"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Solvable groups".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Manz, Olaf. Representations of solvable groups. Cambridge: Cambridge University Press, 1993.
Buscar texto completo1936-, Hawkes Trevor O., ed. Finite soluble groups. Berlin: W. de Gruyter, 1992.
Buscar texto completoShunkov, V. P. O vlozhenii primarnykh ėlementov v gruppe. Novosibirsk: VO Nauka, 1992.
Buscar texto completoShunkov, V. P. Mp̳-gruppy. Moskva: "Nauka", 1990.
Buscar texto completoThe primitive soluble permutation groups of degree less than 256. Berlin: Springer-Verlag, 1992.
Buscar texto completoFinite presentability of S-arithmetic groups: Compact presentability of solvable groups. Berlin: Springer-Verlag, 1987.
Buscar texto completoWords: Notes on verbal width in groups. Cambridge: Cambridge University Press, 2009.
Buscar texto completoBencsath, Katalin A. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013.
Buscar texto completoBencsath, Katalin A., Marianna C. Bonanome, Margaret H. Dean y Marcos Zyman. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5450-2.
Texto completoFujiwara, Hidenori y Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55288-8.
Texto completoAbels, Herbert. Finite Presentability of S-Arithmetic Groups Compact Presentability of Solvable Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0079708.
Texto completoGroup and ring theoretic properties of polycyclic groups. London: Springer, 2009.
Buscar texto completoBaklouti, Ali, Hidenori Fujiwara y Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82044-2.
Texto completoIsolated involutions in finite groups. Providence, Rhode Island: American Mathematical Society, 2013.
Buscar texto completoThe C*-algebras of a class of solvable Lie groups. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Buscar texto completo1941-, Glauberman G. y Carlip Walter 1956-, eds. Local analysis for the odd order theorem. Cambridge [England]: Cambridge University Press, 1994.
Buscar texto completoWang, Xiaolu. The C [asterisk] -algebras of a class of solvable Lie groups. Harlow: Longman Scientific & Technical, 1989.
Buscar texto completoAnalytic pseudodifferential operators for the Heisenberg group and local solvability. Princeton, N.J: Princeton University Press, 1990.
Buscar texto completoNew developments in Lie theory and its applications: Seventh workshop in Lie theory and its applications, November 26-December 1, 2000, Cordoba, Argentina. Providence, R.I: American Mathematical Society, 2011.
Buscar texto completoL, Shader Bryan, ed. Matrices of sign-solvable linear systems. Cambridge: Cambridge University Press, 1995.
Buscar texto completo1932-, Bass Hyman y Lam, T. Y. (Tsit-Yuen), 1942-, eds. Algebra. Providence, R.I: American Mathematical Society, 2010.
Buscar texto completoChristensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.
Buscar texto completoauthor, Winternitz Pavel, ed. Classification and identification of Lie algebras. Providence, Rhode Island: American Mathematical Society, 2014.
Buscar texto completoCharacters of Solvable Groups. American Mathematical Society, 2018.
Buscar texto completoWolf, Thomas R. y Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2009.
Buscar texto completoWolf, Thomas R. y Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2011.
Buscar texto completoRobinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer, 2010.
Buscar texto completoRobinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer London, Limited, 2013.
Buscar texto completoRobinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer London, Limited, 2013.
Buscar texto completoRobinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer, 2010.
Buscar texto completoSemeniuk, Christine. Groups with Solvable Word Problems. Creative Media Partners, LLC, 2018.
Buscar texto completoBencsath, Katalin A., Marianna C. Bonanome y Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.
Buscar texto completoZyman, Marcos, Katalin A. A. Bencsath, Marianna C. Bonanome y Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.
Buscar texto completoFujiwara, Hidenori y Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2016.
Buscar texto completoFujiwara, Hidenori y Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer, 2014.
Buscar texto completoFujiwara, Hidenori y Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2014.
Buscar texto completoAbels, Herbert. Finite Presentability of S-Arithmetic Groups. Compact Presentability of Solvable Groups. Springer London, Limited, 2006.
Buscar texto completoArnal, Didier y Bradley Currey III. Representations of Solvable Lie Groups: Basic Theory and Examples. University of Cambridge ESOL Examinations, 2020.
Buscar texto completoBaklouti, Ali, Hidenori Fujiwara y Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2022.
Buscar texto completoArnal, Didier y Bradley Currey. Representations of Solvable Lie Groups: Basic Theory and Examples. Cambridge University Press, 2020.
Buscar texto completoRepresentation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2021.
Buscar texto completoWang, Yupeng, Wen-Li Yang, Junpeng Cao y Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2016.
Buscar texto completoWang, Yupeng, Wen-Li Yang, Junpeng Cao y Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.
Buscar texto completoWang, Yupeng, Wen-Li Yang, Junpeng Cao y Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.
Buscar texto completoPremios de investicación [i.e. investigación] concedidos por la Academia en las secciones de exactas y físicas durante el periodo (1999-2000). [Zaragoza, Spain: Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza], 2000.
Buscar texto completoThe C*- Algebras of a Class of Solvable Lie Groups (Pitman Research Notes in Mathematics 199). Livingstone, Churchill, 1989.
Buscar texto completoLi, Huishi. Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.
Buscar texto completoNoncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.
Buscar texto completoGeometric Group Theory. American Mathematical Society, 2018.
Buscar texto completoAbbes, Ahmed y Michel Gros. Representations of the fundamental group and the torsor of deformations. Local study. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0002.
Texto completo