Literatura académica sobre el tema "Solvable approximation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Solvable approximation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Solvable approximation"
Hopkins, William E. y Wing Shing Wong. "Approximation of almost solvable bilinear systems". Systems & Control Letters 6, n.º 2 (julio de 1985): 131–40. http://dx.doi.org/10.1016/0167-6911(85)90011-8.
Texto completoValtancoli, P. "Exactly solvable f(R) inflation". International Journal of Modern Physics D 28, n.º 07 (mayo de 2019): 1950087. http://dx.doi.org/10.1142/s0218271819500871.
Texto completoLemm, J. C. "Inhomogeneous Random Phase Approximation: A Solvable Model". Annals of Physics 244, n.º 1 (noviembre de 1995): 201–38. http://dx.doi.org/10.1006/aphy.1995.1111.
Texto completoShi, Ronggang y Barak Weiss. "Invariant measures for solvable groups and Diophantine approximation". Israel Journal of Mathematics 219, n.º 1 (abril de 2017): 479–505. http://dx.doi.org/10.1007/s11856-017-1472-y.
Texto completoCo’, Giampaolo y Stefano De Leo. "Hartree–Fock and random phase approximation theories in a many-fermion solvable model". Modern Physics Letters A 30, n.º 36 (3 de noviembre de 2015): 1550196. http://dx.doi.org/10.1142/s0217732315501965.
Texto completoSOLENOV, DMITRY y VLADIMIR PRIVMAN. "EVALUATION OF DECOHERENCE FOR QUANTUM COMPUTING ARCHITECTURES: QUBIT SYSTEM SUBJECT TO TIME-DEPENDENT CONTROL". International Journal of Modern Physics B 20, n.º 11n13 (20 de mayo de 2006): 1476–95. http://dx.doi.org/10.1142/s0217979206034066.
Texto completoMota, V. y E. S. Hern�ndez. "A solvable version of the collisional random phase approximation". Zeitschrift f�r Physik A Atomic Nuclei 328, n.º 2 (junio de 1987): 177–87. http://dx.doi.org/10.1007/bf01290660.
Texto completoKudryashov, Vladimir V. y Yulian V. Vanne. "Explicit summation of the constituent WKB series and new approximate wave functions". Journal of Applied Mathematics 2, n.º 6 (2002): 265–75. http://dx.doi.org/10.1155/s1110757x02112046.
Texto completoSollich, Peter y Anason Halees. "Learning Curves for Gaussian Process Regression: Approximations and Bounds". Neural Computation 14, n.º 6 (1 de junio de 2002): 1393–428. http://dx.doi.org/10.1162/089976602753712990.
Texto completoShen, Jinrong, Wei Liu, Baiyu Wang y Xiangyang Peng. "The Centrosymmetric Matrices of Constrained Inverse Eigenproblem and Optimal Approximation Problem". Mathematical Problems in Engineering 2020 (10 de marzo de 2020): 1–8. http://dx.doi.org/10.1155/2020/4590354.
Texto completoTesis sobre el tema "Solvable approximation"
Manríquez, Peñafiel Ronald. "Local approximation by linear systems and Almost-Riemannian Structures on Lie groups and Continuation method in rolling problem with obstacles". Electronic Thesis or Diss., université Paris-Saclay, 2022. https://theses.hal.science/tel-03716186.
Texto completoThe aim of this thesis is to study two topics in sub-Riemannian geometry. On the one hand, the local approximation of an almost-Riemannian structure at singular points, and on the other hand, the kinematic system of a 2-dimensional manifold rolling (without twisting or slipping) on the Euclidean plane with forbidden regions. A n-dimensional almost-Riemannian structure can be defined locally by n vector fields satisfying the Lie algebra rank condition, playing the role of an orthonormal frame. The set of points where these vector fields are colinear is called the singular set (Z). At tangency points, i.e., points where the linear span of the vector fields is equal to the tangent space of Z, the nilpotent approximation can be replaced by the solvable one. In this thesis, under generic conditions, we state the order of approximation of the original distance by d ̃ (the distance induced by the solvable approximation), and we prove that d ̃ is closer than the distance induced by the nilpotent approximation to the original distance. Regarding the structure of the approximating system, the Lie algebra generated by this new family of vector fields is finite-dimensional and solvable (in the generic case). Moreover, the solvable approximation is equivalent to a linear ARS on a homogeneous space or a Lie group. On the other hand, nonholonomic systems have attracted the attention of many authors from different disciplines for their varied applications, mainly in robotics. The rolling-body problem (without slipping or spinning) of a 2-dimensional Riemannian manifold on another one can be written as a nonholonomic system. Many methods, algorithms, and techniques have been developed to solve it. A numerical implementation of the Continuation Method to solve the problem in which a convex surface rolls on the Euclidean plane with forbidden regions (or obstacles) without slipping or spinning is performed. Several examples are illustrated
Libros sobre el tema "Solvable approximation"
Research Institute for Advanced Computer Science (U.S.), ed. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Buscar texto completoChristensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.
Buscar texto completoCombinatorics and Random Matrix Theory. American Mathematical Society, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Solvable approximation"
Lobbe, Alexander. "Deep Learning for the Benes Filter". En Mathematics of Planet Earth, 195–210. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_12.
Texto completoSikorski, Krzysztof A. "Fixed Points- Noncontractive Functions". En Optimal Solution of Nonlinear Equations. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195106909.003.0007.
Texto completoMussardo, Giuseppe. "Approximate Solutions". En Statistical Field Theory, 106–58. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788102.003.0003.
Texto completoRodriguez, Ricardo, Ivo Bukovsky y Noriyasu Homma. "Potentials of Quadratic Neural Unit for Applications". En Advances in Abstract Intelligence and Soft Computing, 343–54. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2651-5.ch023.
Texto completoTuck, Adrian F. "Non-Equilibrium Statistical Mechanics". En Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0010.
Texto completoKalyuzhnyi, Yu V. y P. T. Cummings. "6 Equations of state from analytically solvable integral equation approximations". En Equations of State for Fluids and Fluid Mixtures, 169–254. Elsevier, 2000. http://dx.doi.org/10.1016/s1874-5644(00)80017-x.
Texto completoJuan Peña, José, Jesús Morales y Jesús García-Ravelo. "Perspective Chapter: Relativistic Treatment of Spinless Particles Subject to a Class of Multiparameter Exponential-Type Potentials". En Schrödinger Equation - Fundamentals Aspects and Potential Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112184.
Texto completoActas de conferencias sobre el tema "Solvable approximation"
Todorov, Emanuel. "Eigenfunction approximation methods for linearly-solvable optimal control problems". En 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 2009. http://dx.doi.org/10.1109/adprl.2009.4927540.
Texto completoPedram, Ali Reza y Takashi Tanaka. "Linearly-Solvable Mean-Field Approximation for Multi-Team Road Traffic Games". En 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029579.
Texto completoElperin, Tov, Andrew Fominykh y Boris Krasovitov. "Modeling of Simultaneous Gas Absorption and Evaporation of Large Droplet". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79924.
Texto completoElperin, Tov, Andrew Fominykh y Boris Krasovitov. "Simultaneous Heat and Mass Transfer During Evaporation/Condensation on the Surface of a Stagnant Droplet in the Presence of Inert Admixtures Containing Non-Condensable Solvable Gas". En ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72493.
Texto completoHerkenrath, Maike, Till Fluschnik, Francesco Grothe y Leon Kellerhals. "Placing Green Bridges Optimally, with Habitats Inducing Cycles". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/531.
Texto completoSingh, Rituraj y Krishna M. Singh. "Iterative Solvers for Meshless Petrov Galerkin (MLPG) Method Applied to Large Scale Engineering Problems Challenges". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53343.
Texto completoZhong, Mingyuan y Emanuel Todorov. "Moving least-squares approximations for linearly-solvable MDP". En 2011 Ieee Symposium On Adaptive Dynamic Programming And Reinforcement Learning. IEEE, 2011. http://dx.doi.org/10.1109/adprl.2011.5967383.
Texto completoManko, D. J. y W. L. Whittaker. "Inverse Dynamic Models Used for Force Control of Compliant, Closed-Chain Mechanisms". En ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0106.
Texto completoWilde, Douglass J. "Monotonicity Analysis of Taguchi’s Robust Circuit Design Problem". En ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0052.
Texto completoXiros, Nikolaos I. "Investigation of a Nonlinear Control Model for Marine Propulsion Power-Plants". En ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63797.
Texto completo