Literatura académica sobre el tema "Solid-to-plasma transition"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Solid-to-plasma transition".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Solid-to-plasma transition"
Ferguson, Ken R., Maximilian Bucher, Tais Gorkhover, Sébastien Boutet, Hironobu Fukuzawa, Jason E. Koglin, Yoshiaki Kumagai et al. "Transient lattice contraction in the solid-to-plasma transition". Science Advances 2, n.º 1 (enero de 2016): e1500837. http://dx.doi.org/10.1126/sciadv.1500837.
Texto completoDorchies, F. y V. Recoules. "Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic". Physics Reports 657 (octubre de 2016): 1–26. http://dx.doi.org/10.1016/j.physrep.2016.08.003.
Texto completoLiu, Chen, Andriani Mentzelopoulou, Fotini Papagavriil, Prashanth Ramachandran, Artemis Perraki, Lucas Claus, Sebastian Barg et al. "SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis". PLOS Biology 21, n.º 9 (18 de septiembre de 2023): e3002305. http://dx.doi.org/10.1371/journal.pbio.3002305.
Texto completoWang, Xin-Ke, Igor Veremchuk, Matej Bobnar, Jing-Tai Zhao y Yuri Grin. "Solid solution Pb1−xEuxTe: constitution and thermoelectric behavior". Inorganic Chemistry Frontiers 3, n.º 9 (2016): 1152–59. http://dx.doi.org/10.1039/c6qi00161k.
Texto completoFISHER, DIMITRI V., ZOHAR HENIS, SHALOM ELIEZER y JUERGEN MEYER-TER-VEHN. "Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals". Laser and Particle Beams 24, n.º 1 (marzo de 2006): 81–94. http://dx.doi.org/10.1017/s0263034606060137.
Texto completoSmirnova, K. V., D. A. Shutov, A. N. Ivanov y V. V. Rybkin. "Plasma-solution synthesis of particles containing transition metals". Journal of Physics: Conference Series 2064, n.º 1 (1 de noviembre de 2021): 012096. http://dx.doi.org/10.1088/1742-6596/2064/1/012096.
Texto completoSingh, Swarnima, P. Bandyopadhyay, Krishan Kumar, M. G. Hariprasad, S. Arumugam y A. Sen. "Transition of a 2D crystal to a non-equilibrium two-phase coexistence state". Physics of Plasmas 30, n.º 4 (abril de 2023): 043704. http://dx.doi.org/10.1063/5.0139228.
Texto completoRao, Lin, Edward G. Gillan y Richard B. Kaner. "Rapid synthesis of transition-metal borides by solid-state metathesis". Journal of Materials Research 10, n.º 2 (febrero de 1995): 353–61. http://dx.doi.org/10.1557/jmr.1995.0353.
Texto completoYeh, F. B. y P. S. Wei. "Effects of Plasma Parameters on the Temperature Field in a Workpiece Experiencing Solid-Liquid Phase Transition". Journal of Heat Transfer 127, n.º 9 (27 de abril de 2005): 987–94. http://dx.doi.org/10.1115/1.1999653.
Texto completoTachibana, K. y Y. Hayashi. "Analysis of the Coulomb-solidification Process in Particle Plasmas". Australian Journal of Physics 48, n.º 3 (1995): 469. http://dx.doi.org/10.1071/ph950469.
Texto completoTesis sobre el tema "Solid-to-plasma transition"
Liotard, Romain. "Étude de la transition solide-plasma du polystyrène et de son influence sur les simulations de fusion par confinement inertiel en attaque directe". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0222.
Texto completoDirect drive inertial confinement fusion (ICF) is a method considered for achieving nuclear fusion reactions by irradiating a target with multiple high-intensity laser pulses. This target is a sphere made of a solid material called an ablator (usually polystyrene), which surrounds a fusion fuel (usually cryogenic deuterium-tritium (DT)). The energy delivered by the laser irradiation causes the ejection of the ablator and the implosion of the target due to the rocket effect. The mechanical work exerted on the hotspot (the center of the target) during the implosion is expected to trigger fusion reactions. Currently, the radiative hydrodynamic codes used to simulate ICF implosions generally assume that the ablator is initially in a plasma state, although it is actually in a solid state. This solid state could play a role during the initial interaction between the lasers and the target. Due to the initial transparency of the ablator, the laser can penetrate the target, leading to the "shine-through" effect, which can modify the laser energy deposition and potentially alter the dynamics of the shocks propagating within the target. Additionally, changes in the laser imprint can influence the evolution of hydrodynamic instabilities during the implosion.The objective of this thesis is to develop a solid-to-plasma transition model for polystyrene based on existing models, that can be integrated into hydrodynamic simulation codes for ICF. To achieve this, the model needed to be adapted to the specific constraints of these codes, taking into account the dependencies of the model on the evolution of all hydrodynamic quantities, and optimizing the numerical costs to avoid an excessive increase in simulation time. The integration of these modifications required experimental validation of the model, which was carried out through an experiment on the GCLT laser at CEA-DIF, measuring the evolution of the transmittance of a polystyrene sheet irradiated by a laser pulse. The results showed a good correlation between simulations and experimental measurements, confirming the validity of the new coupled model. This model was then used to study the potential effects of the initial solid state on direct drive ICF simulations. The results revealed that accounting for the solid-to-plasma transition influences the growth of hydrodynamic instabilities. Specifically, we observed a reduction in low spatial frequency instabilities for targets with a thick ablator, and a general increase in high spatial frequency instabilities due to the non-linearity of the solid-to-plasma transition phenomenon
Capítulos de libros sobre el tema "Solid-to-plasma transition"
Grimes, M. K., Y. S. Lee y M. C. Downer. "Solid to Plasma Transition in Fs-Laser-Irradiated Fe: Collapse of the Spin-Orbit Gap". En Applications of High-Field and Short Wavelength Sources, 131–34. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9241-6_20.
Texto completoGrimes, Mikal K., Yun-Shik Lee y Michael C. Downer. "Vacuum Heating vs. Resonance Absorption in the Solid to Plasma Transition of fs-Laser-Irradiated Iron and Aluminum". En Springer Series in Chemical Physics, 398–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72289-9_119.
Texto completoActas de conferencias sobre el tema "Solid-to-plasma transition"
Tsui, Y. Y., A. Ng, Z. Chen, M. Z. Mo, S. H. Glenzer, V. Recoules y L. Soulard. "Ultrashort Laser Generated Warm Dense Matter - Transition from Solid to Plasma". En 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717870.
Texto completoGrimes, M. K., Y. S. Lee y M. C. Downer. "Solid to Plasma Transition in fs-Laser-Irradiated Fe: Collapse of the Spin-Orbit Gap". En Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the33.
Texto completoSheshadri, Karthik, M. N. Manas, Shruti Raj, Narasimhaiah Ramesh y T. S. Sheshadri. "An analytical formulation of the copper load solid to plasma transition problem when driven by a pulse forming network". En 2012 16th International Symposium on Electromagnetic Launch Technology (EML). IEEE, 2012. http://dx.doi.org/10.1109/eml.2012.6325052.
Texto completoMulser, P., A. Al-Khateeb, D. Bauer, M. Hahn, D. Lewien, H. Ruhl y A. Saemann. "Scenarios of superintense fs laser pulses interacting with solids". En High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.md5.
Texto completoGarbiec, Dariusz, Maria Wiśniewska, Mateusz Marczewski, Tomasz Mościcki, Rafał Psiuk, Justyna Chrzanowska-Giżyńska, Agnieszka Krawczyńska, Bogusława Adamczyk-Cieślak y Małgorzata Lewandowska. "Spark Plasma Sintering Of Tungsten Boride With Transition Metals Admixture". En World Powder Metallurgy 2022 Congress & Exhibition. EPMA, 2022. http://dx.doi.org/10.59499/wp225371814.
Texto completoNickles, P. V., V. N. Shlyaptsev, M. P. Kalachnikov, M. Schnuerer, T. Schlegel y W. Sandner. "Dual pulse pumping of efficient, short pulse table top X-ray lasers". En International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.11.
Texto completoSmirnova, K. V., D. A. Shutov, A. N. Ivanov y V. V. Rybkin. "Plasma-solution synthesis of a solid phase from solutions of iron and cobalt nitrates of various concentrations". En 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n1-o-046701.
Texto completoBarber, David, H. A. Calderón, Julio Quintero y Francisco C. Robles Hernandez. "Synthesis of Carbon Nanostructures by Thermo-Mechanical Means". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89866.
Texto completoTorrell, M., I. G. Cano, J. M. Miguel, J. M. Guilemany, M. A. Laguna-Bercero y V. M. Orera. "Solid Oxide Fuel Cells Produced by Atmospheric Plasma Spray Technology: Structural and Electrochemical Characterization". En ITSC 2012, editado por R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald y F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0627.
Texto completoLuk, T. S., McPherson, D. Tate, K. Boyer, C. K. Rhodes, V. L. Jacobs, P. G. Burkhalter, A. Zigler, D. A. Newman y D. J. Nagel. "X-Ray Spectral Determination of Electron Density in Dense Laser-Excited Targets*". En Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tua1.
Texto completo