Artículos de revistas sobre el tema "Solar cells"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Solar cells.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Solar cells".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Rosana, N. T. Mary y Joshua Amarnath . D. "Dye Sensitized Solar Cells for The Transformation of Solar Radiation into Electricity". Indian Journal of Applied Research 4, n.º 6 (1 de octubre de 2011): 169–70. http://dx.doi.org/10.15373/2249555x/june2014/53.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Majidzade, Vusala A. "Sb2Se3-BASED SOLAR CELLS: OBTAINING AND PROPERTIES". Chemical Problems 18, n.º 2 (2020): 181–98. http://dx.doi.org/10.32737/2221-8688-2020-2-181-198.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Vlaskin, V. I. "Nanocrystalline silicon carbide films for solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 19, n.º 3 (30 de septiembre de 2016): 273–78. http://dx.doi.org/10.15407/spqeo19.03.273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tsubomura, Hiroshi y Hikaru Kobayashi. "Solar cells". Critical Reviews in Solid State and Materials Sciences 18, n.º 3 (enero de 1993): 261–326. http://dx.doi.org/10.1080/10408439308242562.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Loferski, Joseph. "Solar cells". Solar Energy 42, n.º 4 (1989): 355–56. http://dx.doi.org/10.1016/0038-092x(89)90040-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ma, Dongling. "Solar Energy and Solar Cells". Nanomaterials 11, n.º 10 (12 de octubre de 2021): 2682. http://dx.doi.org/10.3390/nano11102682.

Texto completo
Resumen
Thanks to the helpful discussions and strong support provided by the Publisher and Editorial Staff of Nanomaterials, I was appointed as a section Editor-in-Chief of the newly launched section “Solar Energy and Solar Cells” earlier this year (2021) [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

K Sengar, Saurabh. "CIGS based Solar Cells - A Scaps 1D Study". International Journal of Science and Research (IJSR) 13, n.º 7 (5 de julio de 2024): 969–71. http://dx.doi.org/10.21275/sr24719130851.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mohammad Bagher, Askari. "Comparison of Organic Solar Cells and Inorganic Solar Cells". International Journal of Renewable and Sustainable Energy 3, n.º 3 (2014): 53. http://dx.doi.org/10.11648/j.ijrse.20140303.12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mathew, Xavier. "Solar cells and solar energy materials". Solar Energy 80, n.º 2 (febrero de 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Graetzel, Michael. "Editorial: Solar Cells and Solar Fuels". Current Opinion in Electrochemistry 2, n.º 1 (abril de 2017): A4. http://dx.doi.org/10.1016/j.coelec.2017.05.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Carlson, Geoffrey. "India – Certain Measures Relating to Solar Cells and Solar Modules (India–Solar Cells), DS456". World Trade Review 16, n.º 3 (14 de junio de 2017): 549–50. http://dx.doi.org/10.1017/s1474745617000118.

Texto completo
Resumen
This dispute concerned domestic content requirements (DCR measures) imposed under India's National Solar Mission. These requirements are imposed on solar power developers selling electricity to the government under the National Solar Mission. They concern solar cells and solar modules, which are used to generate solar power.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

LEE, Kangmin y Kwanyong SEO. "Transparent Solar Cells". Physics and High Technology 28, n.º 5 (31 de mayo de 2019): 21–26. http://dx.doi.org/10.3938/phit.28.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Zhuravleva, T. S. y A. V. Vannikov. "Polymer Solar Cells". Materials Science Forum 21 (enero de 1991): 203–0. http://dx.doi.org/10.4028/www.scientific.net/msf.21.203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Roose, Bart. "Perovskite Solar Cells". Energies 15, n.º 17 (1 de septiembre de 2022): 6399. http://dx.doi.org/10.3390/en15176399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Chen, Guanying, Zhijun Ning y Hans Ågren. "Nanostructured Solar Cells". Nanomaterials 6, n.º 8 (9 de agosto de 2016): 145. http://dx.doi.org/10.3390/nano6080145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Sessolo, Michele y Henk J. Bolink. "Hovering solar cells". Nature Materials 14, n.º 10 (24 de agosto de 2015): 964–66. http://dx.doi.org/10.1038/nmat4405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Fang, Zhimin, Shizhe Wang, Shangfeng Yang y Liming Ding. "CsAg2Sb2I9 solar cells". Inorganic Chemistry Frontiers 5, n.º 7 (2018): 1690–93. http://dx.doi.org/10.1039/c8qi00309b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Greenham, Neil C. y Michael Grätzel. "Nanostructured solar cells". Nanotechnology 19, n.º 42 (25 de septiembre de 2008): 420201. http://dx.doi.org/10.1088/0957-4484/19/42/420201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Greenham, Neil C. "Polymer solar cells". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 1996 (13 de agosto de 2013): 20110414. http://dx.doi.org/10.1098/rsta.2011.0414.

Texto completo
Resumen
This article reviews the motivations for developing polymer-based photovoltaics and describes some of the material systems used. Current challenges are identified, and some recent developments in the field are outlined. In particular, recent work to image and control nanostructure in polymer-based solar cells is reviewed, and very recent progress is described using the unique properties of organic semiconductors to develop strategies that may allow the Shockley–Queisser limit to be broken in a simple photovoltaic cell.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Garnett, Erik C., Mark L. Brongersma, Yi Cui y Michael D. McGehee. "Nanowire Solar Cells". Annual Review of Materials Research 41, n.º 1 (4 de agosto de 2011): 269–95. http://dx.doi.org/10.1146/annurev-matsci-062910-100434.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Pudasaini, Pushpa Raj, Sanjay K. Srivastava, Yaohui Zhan, Francisco Ruiz-Zepeda y Bill Pandit. "Nanostructured Solar Cells". International Journal of Photoenergy 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/1289349.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kondrotas, Rokas, Chao Chen y Jiang Tang. "Sb2S3 Solar Cells". Joule 2, n.º 5 (mayo de 2018): 857–78. http://dx.doi.org/10.1016/j.joule.2018.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Notman, Nina. "Underwater solar cells". Materials Today 15, n.º 7-8 (julio de 2012): 301. http://dx.doi.org/10.1016/s1369-7021(12)70134-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gregg, Brian A. "Excitonic Solar Cells". Journal of Physical Chemistry B 107, n.º 20 (mayo de 2003): 4688–98. http://dx.doi.org/10.1021/jp022507x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Gerischer, H. "Photoelectrochemical solar cells". Electrochimica Acta 34, n.º 6 (junio de 1989): 891. http://dx.doi.org/10.1016/0013-4686(89)87128-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Li, Gang, Rui Zhu y Yang Yang. "Polymer solar cells". Nature Photonics 6, n.º 3 (29 de febrero de 2012): 153–61. http://dx.doi.org/10.1038/nphoton.2012.11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Wagner, P. "Silicon solar cells". Microelectronics Journal 19, n.º 4 (julio de 1988): 37–50. http://dx.doi.org/10.1016/s0026-2692(88)80043-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Palewicz, Marcin y Agnieszka Iwan. "Polymer solar cells". Polimery 56, n.º 03 (marzo de 2011): 99–107. http://dx.doi.org/10.14314/polimery.2011.099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Vigil, Elena. "Nanostructured Solar Cells". Key Engineering Materials 444 (julio de 2010): 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.

Texto completo
Resumen
Novel types of solar cells based on nanostructured materials are intensively studied because of their prospective applications and interesting new working principle – essentially due to the nanomaterials used They have evolved from dye sensitized solar cells (DSSC) in the quest to improve their behavior and characteristics. Their nanocrystals (ca. 10-50 nm) do not generally show the confinement effect present in quantum dots of size ca. 1-10nm where electron wave functions are strongly confined originating changes in the band structure. Nonetheless, the nanocrystalline character of the semiconductor used determines a different working principle; which is explained, although it is not completely clear so far,. Different solid nanostructured solar cells are briefly reviewed together with research trends. Finally, the influence of the photoelectrode electron-extracting contact is analyzed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Tregnago, Giulia. "Washable solar cells". Nature Energy 4, n.º 2 (febrero de 2019): 90. http://dx.doi.org/10.1038/s41560-019-0341-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kyaw, Aung Ko Ko, Antonio Otavio T. Patrocinio, Dewei Zhao y Victor Brus. "Heterojunction Solar Cells". International Journal of Photoenergy 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/163984.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sfaelou, S., D. Raptis, V. Dracopoulos y P. Lianos. "BiOI solar cells". RSC Advances 5, n.º 116 (2015): 95813–16. http://dx.doi.org/10.1039/c5ra19835f.

Texto completo
Resumen
An inorganic solar cell was constructed using a thin compact supporting layer of titania with BiOI nanoflakes as a functional material, a Pt/FTO cathode and a I3/I redox electrolyte.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Catchpole, K. R. y A. Polman. "Plasmonic solar cells". Optics Express 16, n.º 26 (17 de diciembre de 2008): 21793. http://dx.doi.org/10.1364/oe.16.021793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Andreev, V. M. "Heterostructure solar cells". Semiconductors 33, n.º 9 (septiembre de 1999): 942–45. http://dx.doi.org/10.1134/1.1187808.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Günes, Serap y Niyazi Serdar Sariciftci. "Hybrid solar cells". Inorganica Chimica Acta 361, n.º 3 (febrero de 2008): 581–88. http://dx.doi.org/10.1016/j.ica.2007.06.042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Batchelor, R. A. y A. Hamnett. "Photoelectrochemical solar cells". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 260, n.º 1 (febrero de 1989): 245–46. http://dx.doi.org/10.1016/0022-0728(89)87117-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gratzel, Michael. "Nanocrystalline solar cells". Renewable Energy 5, n.º 1-4 (agosto de 1994): 118–33. http://dx.doi.org/10.1016/0960-1481(94)90361-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Eldallal, G. M., M. S. Abou-Elwafa, M. A. Elgammal y S. M. Bedair. "concentrator solar cells". Renewable Energy 6, n.º 7 (octubre de 1995): 713–18. http://dx.doi.org/10.1016/0960-1481(95)00010-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Pagliaro, Mario, Rosaria Ciriminna y Giovanni Palmisano. "Flexible Solar Cells". ChemSusChem 1, n.º 11 (24 de noviembre de 2008): 880–91. http://dx.doi.org/10.1002/cssc.200800127.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Brabec, C. J., N. S. Sariciftci y J. C. Hummelen. "Plastic Solar Cells". Advanced Functional Materials 11, n.º 1 (febrero de 2001): 15–26. http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::aid-adfm15>3.0.co;2-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wenham, S. R. y M. A. Green. "Silicon solar cells". Progress in Photovoltaics: Research and Applications 4, n.º 1 (enero de 1996): 3–33. http://dx.doi.org/10.1002/(sici)1099-159x(199601/02)4:1<3::aid-pip117>3.0.co;2-s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ito, Seigo. "Printable solar cells". Wiley Interdisciplinary Reviews: Energy and Environment 4, n.º 1 (13 de mayo de 2014): 51–73. http://dx.doi.org/10.1002/wene.112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Wöhrle, Dieter y Dieter Meissner. "Organic Solar Cells". Advanced Materials 3, n.º 3 (marzo de 1991): 129–38. http://dx.doi.org/10.1002/adma.19910030303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

ARAKAWA, Hironori. "Future Prospects of Organic Solar Cells-Dye Sensitized Solar Cells-". Kobunshi 52, n.º 5 (2003): 320–23. http://dx.doi.org/10.1295/kobunshi.52.320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Omarova, Zh. "PERFORMANCE SIMULATION OF ECO-FRIENDLY SOLAR CELLS BASED ONCH3NH3SnI3". Eurasian Physical Technical Journal 19, n.º 2 (40) (15 de junio de 2022): 58–64. http://dx.doi.org/10.31489/2022no2/58-64.

Texto completo
Resumen
Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kadhim, Adam K. "Stable Perovskite Solar Cells Using Reduced Graphene Oxide Additive". Revista Gestão Inovação e Tecnologias 11, n.º 3 (30 de junio de 2021): 463–69. http://dx.doi.org/10.47059/revistageintec.v11i3.1950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Shuai Gu, Shuai Gu, Pengchen Zhu Pengchen Zhu, Renxing Lin Renxing Lin, Mingyao Tang Mingyao Tang, Shining Zhu Shining Zhu y Jia Zhu Jia Zhu. "Thermal-stable mixed-cation lead halide perovskite solar cells". Chinese Optics Letters 15, n.º 9 (2017): 093501. http://dx.doi.org/10.3788/col201715.093501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Martynyuk, Valeriy, Juliy Boiko, Marcin Łukasiewicz, Ewa Kuliś y Janusz Musiał. "Diagnostics of Solar Cells". MATEC Web of Conferences 302 (2019): 01013. http://dx.doi.org/10.1051/matecconf/201930201013.

Texto completo
Resumen
The paper represents the mathematical model for diagnostics of solar cell. The research objectives are the problem of determining a solar cell technical condition during its operation. The solar cell diagnostics is based on the mathematical model of solar cells. The single-diode solar cell model is characterized by a slight deviation of the theoretically calculated characteristics from the characteristics of the real solar cell, one of the reasons being the complexity of the accurate measurement of the series resistance. The single-diode solar cell model uses the current and voltage ratio in the form of an implicit function and it cannot be solved directly. For its solution it is necessary to use numerical methods. This is main disadvantage of the single-diode solar cell model. The methodological approach to increasing the reliability of the solar cell diagnostic has been proposed, in terms of multi-parameter the solar cell diagnostic by applying the solar cell impedance model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Wang, Jiaming. "Comparison of development prospects between silicon solar cells and perovskite solar cells". Highlights in Science, Engineering and Technology 27 (27 de diciembre de 2022): 512–18. http://dx.doi.org/10.54097/hset.v27i.3808.

Texto completo
Resumen
The development history, preparation process, structure and working principle of silicon solar cells and perovskite solar cells are introduced. The main parameters and production processes of the two kinds of solar cells are compared. The advantages and disadvantages of perovskite solar energy compared with existing solar cells in market application are analyzed and summarized, including good light absorption, high energy conversion efficiency and simple process flow, The problems of cost, size and stability of perovskite solar cells in market application are pointed out and the solutions are given. Perovskite solar cells have an excellent development prospect. Short circuit voltage, open circuit current and efficiency exceed those of silicon solar cells and are expected to gradually replace silicon solar cells in the market.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Albrasia, Enteisar y Fathia Mohhammed Essa Albrasi. "Solar cells and their use". International Journal of Applied Science and Research 05, n.º 05 (2022): 27–33. http://dx.doi.org/10.56293/ijasr.2022.5428.

Texto completo
Resumen
The sun's light is an unewable, renewable source of energy that is unaffected by environmental factors like noise and pollution. It is easily obtainable from the Earth's petroleum resources, natural gas, and other nonrenewable energy sources like coal. There were several stages of evolution in the composition of solar cells from one generation to the next. The silicon used in the early solar cells was largely produced as single crystals on silicon chips. Furthermore, advances in thin films the dye and organic solar cells improved the cell's efficiency. The inability to choose the best solar cell for a particular place is essentially what prevents advancement
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía