Tesis sobre el tema "Soil structure"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Soil structure".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Grieger, Gayle. "The effect of mineralogy and exchangeable magnesium on the dispersive behaviour of weakly sodic soils /". Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phg8478.pdf.
Texto completoCorneo, Paola Elisa. "Understanding soil microbial community dynamics in vineyard soils: soil structure, climate and plant effects". Doctoral thesis, country:CH, 2013. http://hdl.handle.net/10449/23970.
Texto completoBrandsma, Richard Theodorus. "Soil conditioner effects on soil erosion, soil structure and crop performance". Thesis, University of Wolverhampton, 1997. http://hdl.handle.net/2436/99094.
Texto completoLi, Xu. "Dual-porosity structure and bimodal hydraulic property functions for unsaturated coarse granular soils /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202009%20LI.
Texto completoGandomzadeh, Ali. "Dynamic soil-structure interaction : effect of nonlinear soil behavior". Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00648179.
Texto completoChen, Chien-chang. "Shear induced evolution of structure in water-deposited sand specimens". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/22724.
Texto completoRouaiguia, Ammar. "Strength of soil-structure interfaces". Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/26883.
Texto completoMiller, Kendall Mar 1958. "INTERPRETIVE SCHEME FOR MODELING THE SPATIAL VARIATION OF SOIL PROPERTIES IN 3-D (AUTOCORRELATION, STOCHASTIC, PROBABILITY)". Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276981.
Texto completoSribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.
Texto completoNelson, Paul Netelenbos. "Organic matter in sodic soils : its nature, decomposition and influence on clay dispersion". Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phn4281.pdf.
Texto completoGusli, Sikstus. "Effect of methods of wetting and rainfall characteristics on crusting and hardsetting of a red-brown earth". Title page, abstract and table of contents only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phg982.pdf.
Texto completoWhite, Thomas Leslie Carleton University Dissertation Geology. "Cryogenic alteration of a frost susceptible soil". Ottawa, 1992.
Buscar texto completoDuval, Jean. "Assessing porosity characteristics as indicators of compaction in a clay soil". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59275.
Texto completoThe tests used were: total porosity as calculated from densimeter readings and from soil cores; structural porosity; water desorption characteristics; and soil profile examination. These tests were performed in three layers of 20 cm and evaluation was based on their practicality and their ability to differentiate between treatments and to correlate with corn yield.
The results confirm that total porosity is a poor indicator of compaction in the subsoil. In soil profile assessments, ped descriptions were preferable to examination of pores. Water content and saturation deficit at $-$4.0 and $-$100 kPa were the best indicators of treatments and plant response.
Juyal, Archana. "Effect of soil structure on temporal and spatial dynamics of bacteria". Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/2c7e4706-3fd5-4a1f-af84-67134a2664ed.
Texto completoPitilakis, Dimitris. "Soil-structure interaction modeling using equivalent linear soil behavior in the substructure method". Châtenay-Malabry, Ecole centrale de Paris, 2006. http://www.theses.fr/2006ECAP1067.
Texto completoA numerical procedure, coded into a numerical code (MISS3D-EqL), is developed to accommodate for the effects of the nonlinear soil behavior on the soil-structure interaction (SSI) using an equivalent linear approach. Equivalent linear behavior is assumed for the soil, while the response of the structure to the ground shaking and its effects on the soil are properly taken into account using the substructure method. The proposed procedure is validated against other numerical software and experimental means, such as shaking table and centrifuge tests. The effects of the equivalent linear soil behavior on the soil-structure system response are clearly demonstrated by analyses of representative case studies. A recursive analysis of typical soil profiles and infrastructures is performed to reveal the further softening of the system and the increased energy dissipation, compared to the linear case, due to the equivalent linear soil behavior. Special emphasis is given to the estimation of the foundation dynamic impedance functions. Dynamic stiffness and radiation dashpot coefficients are estimated for typical footings resting on typical soil profiles with equivalent linear behavior. The effects of the nonlinear soil behavior on the dynamic coefficient are shown compared to the linear elastic case. The dynamic stiffness coefficient decreases with increasing input acceleration amplitude, with decreasing soil shear wave velocity and with decreasing soil shear modulus, while it depends on the frequency content of the earthquake. The radiation dashpot coefficient is unaffected by the nonlinear soil behavior for most practical applications
García, García Julio Abraham. "Reduction of seismically induced structural vibrations considering soil-structure interaction". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969246390.
Texto completoRahgozar, Mohammad Ali Carleton University Dissertation Engineering Civil. "Semismic soil-structure interaction analysis of structural base shear amplification". Ottawa, 1993.
Buscar texto completoNieto, ferro Alex. "Nonlinear Dynamic Soil-Structure Interaction in Earthquake Engineering". Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0006/document.
Texto completoThe present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter subdomain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions
Dinel, H. (Henri) 1950. "The influence of soil organic matter components on the aggregation and structural stability of a lacustrine silty clay /". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74306.
Texto completoBarzegar, Abdolrahman. "Structural stability and mechanical strength of salt-affected soils". Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phb296.pdf.
Texto completoLöfkvist, John. "Modifying soil structure using plant roots /". Uppsala : Dept. of Soil Sciences, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200560.pdf.
Texto completoWarnakulasuriya, Hapuhennedige Surangith. "Soil structure interaction of buried pipes". Thesis, University of East London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286607.
Texto completoLees, Andrew Steven. "Soil/structure interaction of temporary roadways". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324808.
Texto completoFairfield, Charles Alexander. "Soil-structure interaction in arch bridges". Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/13809.
Texto completoTaherzadeh, Reza. "Seismic soil-pile group-structure interaction". Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1096.
Texto completoDespite the significant progress in simple engineering design of surface footing with considering the soil-structure interaction (SSI), there is still a need of the same procedure for the pile group foundation. The main approach to solve this strongly coupled problem is the use of full numerical models, taking into account the soil and the piles with equal rigor. This is however a computationally very demanding approach, in particular for large numbers of piles. The originality of this thesis is using an advanced numerical method with coupling the existing software MISS3D based on boundary element (BE), green's function for the stratified infinite visco-elastic soil and the matlab toolbox SDT based on finite element (FE) method to modeling the foundation and the superstructure. After the validation of this numerical approach with the other numerical results published in the literature, the leading parameters affecting the impedance and the kinematic interaction have been identified. Simple formulations have then been derived for the dynamic stiffness matrices of pile groups foundation subjected to horizontal and rocking dynamic loads for both floating piles in homogeneous half-space and end-bearing piles. These formulations were found using a large data base of impedance matrix computed by numerical FE-BE model. These simple approaches have been validated in a practical case. A modified spectral response is then proposed with considering the soil-structure interaction effect
Ritter, Stefan. "Experiments in tunnel-soil-structure interaction". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273891.
Texto completoKhalili, Tehrani Payman. "Analysis and modeling of soil-structure interaction in bridge support structures". Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1925776151&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texto completoFeeney, Deborah Siobhan. "The influence of fungi upon soil structure and soil water relations". Thesis, Abertay University, 2004. https://rke.abertay.ac.uk/en/studentTheses/2a92d2fc-b3c5-456f-8b9a-e406bd78ee84.
Texto completoAlyagshi, Eilouch Mohamed Nazih. "A mixed method for transient analysis of structures including soil-structure interaction /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487264603218809.
Texto completoRomanel, Celso. "A global-local approach for dynamic soil-structure interaction analysis of deeply embedded structures in a layered medium". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184762.
Texto completoBalendra, Surendran. "Numerical modeling of dynamic soil-pile-structure interaction". Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Fall2005/s%5Fbalendra%5F120705.pdf.
Texto completoWick, Abbey Foster. "Soil aggregate and organic matter dynamics in reclaimed mineland soils". Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1400961671&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Texto completoYogendrakumar, Muthucumarasamy. "Dynamic soil-structure interaction : theory and verification". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29222.
Texto completoApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Sun, Hepn Wing. "Ground deformation mechanisms for soil-structure interaction". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303931.
Texto completoDavid, Thevaneyan Krishta David. "Integral bridges: modelling the soil-structure interaction". Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581881.
Texto completoDewsbury, Jonathan J. "Numerical modelling of soil-pile-structure interaction". Thesis, University of Southampton, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582152.
Texto completoZolghadr, Zadeh Jahromi Hamid. "Partitioned analysis of nonlinear soil-structure interaction". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512070.
Texto completoTaunton, Paul R. "Centrifuge modelling of soil/masonry structure interaction". Thesis, Cardiff University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244112.
Texto completoCallaway, Phillip Arthur. "Soil-structure interaction in masonry arch bridges". Thesis, University of Sheffield, 2007. http://etheses.whiterose.ac.uk/3036/.
Texto completoWhite, William Patrick. "Soil moisture, fire, and tree community structure". Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1301936875.
Texto completoPang, Sydney Carleton University Dissertation Engineering Civil. "Soil-structure interaction in discontinuous shear zones". Ottawa, 1989.
Buscar texto completoMaterechera, Simeon Albert. "Generation of soil structure by plant roots". Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Soil Science, 1993. http://hdl.handle.net/2440/21654.
Texto completoThesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, Waite Agricultural Research Institute, 1994
Elshesheny, Ahmed. "Dynamic soil-structure interaction of reinforced concrete buried structures under the effect of dynamic loads using soil reinforcement new technologies. Soil-structure interaction of buried rigid and flexible pipes under geogrid-reinforced soil subjected to cyclic loads". Thesis, University of Bradford, 2019. http://hdl.handle.net/10454/18312.
Texto completoGovernment of Egypt
Aldaikh, Hesham S. H. "Discrete models for the study of dynamic structure-soil-structure interaction". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633205.
Texto completoZinn, Yuri Lopes. "Textural, mineralogical and structural controls on soil organic carbon retention in the Brazilian Cerrados". Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1131381122.
Texto completoSoyoz, Serdar. "Effects Of Soil Structure Interaction And Base Isolated Systems On Seismic Performance Of Foundation Soils". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605119/index.pdf.
Texto completoPark, Jin Young. "A critical assessment of moist tamping and its effect on the initial and evolving structure of dilatant triaxial specimens". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/23949.
Texto completoO'Brien, Eugene M. "Soil morphology and potentiometric surface relationship in an East Central Indiana toposequence". Virtual Press, 2000. http://liblink.bsu.edu/uhtbin/catkey/1164849.
Texto completoDepartment of Natural Resources and Environmental Management
Reeve, Jennifer Rose. "Soil quality, microbial community structure, and organic nitrogen uptake in organic and conventional farming systems". Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Summer2007/j_reeve_071207.pdf.
Texto completoSolomon-Wisdom, Grace Oyiza. "The effect of in situ spatial heterogeneity of lead in soil on plant uptake". Thesis, University of Sussex, 2015. http://sro.sussex.ac.uk/id/eprint/54284/.
Texto completo