Siga este enlace para ver otros tipos de publicaciones sobre el tema: Soil respiration.

Tesis sobre el tema "Soil respiration"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Soil respiration".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Iost, Susanne. "Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of Southern Ecuador: influence of altitude". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1201126765623-42870.

Texto completo
Resumen
Impacts of land use and climate change in tropical forests on the global carbon budget are of principal interest in the recent research, as these forests amount to about 48 % of the world’s forested area. Interest has been focused on lowland tropical forests mainly, but tropical montane forests occupy about 20 % of all tropical forests. Soils of tropical montane forests are frequently waterlogged and characterised by high soil organic carbon stocks. Furthermore, along altitudinal gradients, changes in stand structure and net primary production can be observed that have not been fully explained yet. As causes reduced microbial activity and nitrogen turnover in soils of tropical montane forests have been suggested. Against the background of climate change, carbon turnover mechanisms in soils of these forests are of special interest. The present study therefore aimed at determining and quantifying relevant carbon and nitrogen pools as well as nitrogen mineralisation potentials. Furthermore, size, activity, and structure of microbial biomass were characterised. The collected data was supposed to provide basic knowledge on carbon and nitrogen cycling in tropical montane forest soils. Thus, evaluation of the susceptibility of their carbon stocks for climate change as well as nitrogen and carbon limitation of microbial organic matter decomposition was possible. Field work of this study was conducted during 2003–2005 at an altitudinal transect that in- cluded five study sites between 1 050 and 3 060 m amsl. Total soil respiration was recorded biweekly over two years, the contribution of roots to total soil CO2 efflux over one year. Soils of the study sites were sampled twice and biochemical and microbial parameters were determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Iost, Susanne. "Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of Southern Ecuador: influence of altitude". Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24042.

Texto completo
Resumen
Impacts of land use and climate change in tropical forests on the global carbon budget are of principal interest in the recent research, as these forests amount to about 48 % of the world’s forested area. Interest has been focused on lowland tropical forests mainly, but tropical montane forests occupy about 20 % of all tropical forests. Soils of tropical montane forests are frequently waterlogged and characterised by high soil organic carbon stocks. Furthermore, along altitudinal gradients, changes in stand structure and net primary production can be observed that have not been fully explained yet. As causes reduced microbial activity and nitrogen turnover in soils of tropical montane forests have been suggested. Against the background of climate change, carbon turnover mechanisms in soils of these forests are of special interest. The present study therefore aimed at determining and quantifying relevant carbon and nitrogen pools as well as nitrogen mineralisation potentials. Furthermore, size, activity, and structure of microbial biomass were characterised. The collected data was supposed to provide basic knowledge on carbon and nitrogen cycling in tropical montane forest soils. Thus, evaluation of the susceptibility of their carbon stocks for climate change as well as nitrogen and carbon limitation of microbial organic matter decomposition was possible. Field work of this study was conducted during 2003–2005 at an altitudinal transect that in- cluded five study sites between 1 050 and 3 060 m amsl. Total soil respiration was recorded biweekly over two years, the contribution of roots to total soil CO2 efflux over one year. Soils of the study sites were sampled twice and biochemical and microbial parameters were determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Denton, Laura Elaine Scott. "Soil respiration at a Colorado subalpine forest". Diss., Connect to online resource, 2005. http://wwwlib.umi.com/dissertations/fullcit/3165811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hartley, Iain P. "The response of soil respiration to temperature". Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chang, Chao-Ting. "Soil water availability regulates soil respiration temperature dependence in Mediterranean forests". Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/406082.

Texto completo
Resumen
The variations of ecosystem and soil respiration are mainly driven by temperature and precipitation, but the importance of temperature and precipitation could vary across temporal and spatial. At diurnal to annual temporal scales, ecosystem and soil respiration generally increase with average annual temperature, but very low or very high soil moisture has been shown to diminish the temperature response of respiration. Therefore, in water-limited ecosystem, such as the Mediterranean region where the seasonal pattern is characterized with significant summer drought, precipitation patterns are likely to play a particularly important role in regulating ecosystem and soil respiration inter annual whereas temperature may be much less factor. In this dissertation, I try to reduce the uncertainties of terrestrial net ecosystem exchange in Mediterranean region by measuring the interaction between environmental factors and soil respiration at short (i.e., diurnal) and medium (i.e., seasonal-years) temporal scales. Three in situ experiments were employed to investigate how soil respiration responds to environmental variations and management. Together, these three studies gave a consistent picture on how soil moisture strongly affects the dynamic and magnitude of soil respiration in Mediterranean forests. Results elucidated a clear soil moisture threshold; when soil moisture is above this threshold, soil temperature is the main driver of soil respiration, meanwhile, when soil moisture is below this threshold, soil respiration decoupled from soil temperature and is controlled by soil moisture. This suggests that soil moisture modified, at least in Mediterranean ecosystems, the temperature sensitivity of respiration through threshold-like response.
Las variaciones de la respiración del ecosistema y del suelo son principalmente impulsadas por la temperatura y la precipitación, pero la importancia de la temperatura y la precipitación puede variar a lo largo del tiempo y el espacio. En las escalas temporales diurnas a anuales, la respiración del ecosistema y del suelo generalmente aumenta con la temperatura media anual, pero se ha demostrado que la humedad del suelo muy baja o muy alta disminuye la respuesta a la temperatura de la respiración. Por lo tanto, en ecosistemas con escasez de agua, como la región mediterránea, donde el patrón estacional se caracteriza por sequías significativas en verano, es probable que los patrones de precipitación jueguen un papel particularmente importante en la regulación de la respiración del ecosistema y del suelo. En esta tesis, intento reducir las incertidumbres del intercambio de ecosistemas netos terrestres en la región mediterránea midiendo la interacción entre los factores ambientales y la respiración del suelo a escalas temporales cortas (diurnas) y medias (estacionales). Se utilizaron tres experimentos in situ para investigar cómo la respiración del suelo responde a las variaciones y manejo del ambiente. En conjunto, estos tres estudios dieron una imagen consistente de cómo la humedad del suelo afecta fuertemente la dinámica y la magnitud de la respiración del suelo en los bosques mediterráneos. Los resultados dilucidaron un umbral claro de humedad del suelo; Cuando la humedad del suelo está por encima de este umbral, la temperatura del suelo es el principal impulsor de la respiración del suelo, mientras que la humedad del suelo está por debajo de este umbral, la respiración del suelo está desacoplada de la temperatura del suelo y controlada por la humedad del suelo. Esto sugiere que la humedad del suelo modificó, al menos en los ecosistemas mediterráneos, la sensibilidad a la temperatura de la respiración a través de la respuesta tipo umbral.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Burns, Nancy Rosalind. "Soil organic matter stability and the temperature sensitivity of soil respiration". Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/9922.

Texto completo
Resumen
Soil respiration is an important source of atmospheric CO2, with the potential for large positive feedbacks with global warming. The size of these feedbacks will depend on the relative sensitivity to temperature of very large global pools of highly stable soil organic matter (SOM), with residence times of centuries or longer. Conflicting evidence exists as to the relationships between temperature sensitivity of respiration and stability of SOM, as well as the temperature sensitivity of individual stabilisation mechanisms. This PhD considers the relationship between different stabilisation mechanisms and the temperature sensitivity of SOM decomposition. I used physical fractionation to isolate SOM pools with a variety of turnover rates, from decadal to centennially cycling SOM, in a peaty gley topsoil from Harwood Forest. Mean residence times of SOM as determined by 14C dating was most strongly affected by depth, providing stability on a millienial scale, while OM-mineral associations and physical protection of aggregates provided stability to around 500 years. Chemical characteristics of organic material in these fractions and whole soils (13C CP-MAS NMR spectroscopy, mass spectrometry, FTIR spectroscopy, thermogravimetric analysis, ICP-OES) indicated the relative contribution of different stabilisation mechanisms to the longevity of each of these fractions. Two long-term incubations of isolated physical fractions and soil horizons at different temperatures provided information about the actual resistance to decomposition in each SOM pool, as well as the temperature sensitivity of respiration from different pools. Naturally 13C-labelled labile substrate additions to the mineral and organic horizons compared the resistance to priming by labile and recalcitrant substrates. Manipulation of soil pore water was investigated as a method for isolating the respiration of SOM from physically occluded positions within the soil architecture. Contadictory lines of evidence emerged on the relative stability of different SOM pools from 14C dating, incubation experiments and chemical characterisation of indicators of stability. This led to the interpretation that physical aggregate protection primarily controls SOM stability within topsoils, while mineral and Fe oxide stability provides more lasting stability in the mineral horizon. Less humified and younger SOM was found to have a higher sensitivity to temperature than respiration from well-humified pools, in contrast to predictions from thermodynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Murray, Sam. "Development of a soil respiration isotopic sampling system". Thesis, University of Canterbury. School of Biological Sciences, 2014. http://hdl.handle.net/10092/9652.

Texto completo
Resumen
The rate of carbon turnover in soil is a balance between the input of carbon by plants through their roots and associated fungi and the loss of carbon due to plant and microbial respiration, oxidation and leaching. Soil carbon dynamics are notoriously difficult to measure, and being able to separate total soil respiration into its autotrophic and heterotrophic components would help understanding of carbon cycling processes. Where autotrophic respiration originates from roots and their associated mycorrhizal fungi, using newly fixed carbon, and heterotrophic respiration originates from the breakdown of older soil organic matter. By calculating the δ¹³C signature of respired CO₂ (the ratio of the abundances of C isotopes ¹²C and ¹³C) it is possible to determine whether it is of heterotrophic or autotrophic origin. In this study a 6 chamber, constant CO₂ concentration measuring apparatus was developed to determine both the rate of CO₂ efflux and to collect undisturbed CO₂ samples for isotope analysis. This apparatus was tested using live soil samples with different δ¹³C values (-22 ‰ to -27 ‰) and respiration rates (2 – 8 µmol m⁻² s⁻¹) obtained from various locations in New Zealand. Testing involved taking samples using the respiration apparatus, then incubating the same samples in a bag, and then comparing the two. There was no difference between the results from the soil respiration apparatus and the bags (R²=0.96, p=0.0002). Twelve microcosms including soil and grass were extracted from a newly converted dairy farm and placed into in growth cabinets. Diurnal courses of partitioned soil respiration were made over 24 hours with constant soil temperature to eliminate temperatures effect on soil respiration. Half were then covered with 90% shade cloth for 12 days to test if a reduction in light (and therefore newly fixed carbon) would have any effect on soil respiration. There was a significant reduction in soil respiration, yet no detectable change in the δ¹³C of soil respired CO₂ under heavily shaded treatment. There was however there was a shift towards heterotrophic dominated respiration. This shows that while L. perenne is resilient to surrounding conditions it is susceptible to change if exposed to different conditions for prolonged periods of time. The use of this new technique in the field will allow improved understanding of factors effecting soil C efflux.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kuntz, Marianne. "Carbon : an important regulator of denitrification in arable soil". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232081.

Texto completo
Resumen
Carbon (C) as a driver of soil denitrification was investigated in a series of four laboratory incubation experiments employing stable nitrogen (N) and C isotope approaches. The research addressed the lack of knowledge on mechanisms through which the quantity and quality of organic‐C containing substrates interact with denitrification. The amount of organic matter added to soil was manipulated to relate C respiration with process rates of denitrification. Respiration derived from dissolved organic matter C was linearly related to denitrification but the direction of the relationship was variable in time. This may be most likely an effect of changing quality of the C available and possibly microbial community structure. Nitrous oxide (N2O) emission from denitrification at the later stages of residue decomposition was driven by nitrate (NO3‐) accumulation in the soil rather than C provided by the residue. Denitrification across a vertical shallow soil profile formed in a laboratory microcosm was investigated. A surface hotspot formed immediately as a response to residue‐C addition and increased rates of N2O production. N2O reduction occurred at depth. The hotspot at depth was related to an indirect effect of residue‐C, which was depletion of O2. Further, to address the complexity of low molecular weight C substrate available to denitrifiers in the soil solution, denitrification rates in response to glucose, citric acid and glutamic acid supplied individually versus in mixture were characterised. Carbon substrate quality regulated N2O production rates via interactions within the soil microbial community and with the soil solid phase. Overall, the experiments showed that C stimulates strong N2O emission peaks and increase cumulative N2O emissions from arable soil along a gradient of varying C substrate complexity and quantity. Interaction in space and time play an important role when C containing inputs affected other proximal drivers of denitrification such as NO3‐ and O2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Boström, Björn. "Achieving carbon isotope mass balance in Northern forest soils, soil respiration and fungi /". Örebro : Department of Natural Sciences, Örebro University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-2101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Flynn, Conor R. "Soil Respiration Response to Disturbance in a Northern Michigan Forest". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1336919672.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Neilson, Julia Killian Worsley 1958. "Microbial respiration as an index of soil aeration in compacted and sewage sludge amended soils". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/191287.

Texto completo
Resumen
The use of liquid sewage sludge on agricultural soils may improve productivity, but cause compaction due to an application procedure requiring multiple passes with heavy machinery. The movement of water through the soil profiles was used as an index indicating a greater degree of compaction in soils amended with high amounts of sewage sludge vs. low amounts or inorganic fertilizer. Laboratory studies developed a method to utilize CO 2 evolution from microbial respiration as an index of soil aeration. Samples of Pima clay loam soil of varying moisture levels were amended with inorganic fertilizer or sewage sludge and compacted to several bulk densities. Aeration restricted microbial respiration at 1.6 Mg m-3 bulk density and 0.24 g g -1 , and 1.4 Mg m -3 bulk density and 0.26 g g -1 moisture, with no variation due to soil amendments. Respiration rates increased in a compacted sewage sludge amended soil, after an incubation period, indicating an improvement in soil structure due to the sludge.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

De, Remy De Courcelles Vivien. "Studies of soil respiration in eucalypt forests of south east Australia". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/10422.

Texto completo
Resumen
This thesis addresses gaps in knowledge of soil respiration in forests of south-east Australia. Soil respiration plays a major part in the cycle of carbon between soils - the biggest pool of terrestrial carbon - and the atmosphere. Despite its global significance, we have only a limited understanding of the magnitude and responses of soil respiration, and especially of its components, to abiotic (temperature, moisture, soil fertility) and biotic (photosynthesis, seasonality of belowground C allocation patterns and root growth, quality and quantity of above and belowground litter) controls. Furthermore, vegetation type may modulate the influences of these abiotic and biotic controls and with soil respiration research having been based mostly in the northern hemisphere, it is crucial that regional studies be conducted further afield. This thesis also considers the context of the current increase in atmospheric [CO2] and resulting predicted climate change that will directly or indirectly impact on soil respiration through extreme weather events, changes in the frequency and intensity of fires or increase in growth. Using both field and laboratory based techniques I measured respiration from soils supporting a variety of Eucalypts. Elevated atmospheric [CO2] did not have an effect on rates of soil respiration in a Eucalyptus saligna plantation, contrary to usual findings. Drought on the other hand slowed rates of respiration, owing to a slowing of the transfer of photosynthates from leaves to roots. The impact of an increase in above-ground litter deposition, a possible consequence of extreme weather events, or continuous increase in primary production can be subdued by the nature and quality of the litter in Eucalyptus pauciflora woodlands. No effect was recorded in the field but ground litter added to soils in the laboratory triggered a response including a priming effect. Root priming effect was also found to increase basal heterotrophic respiration by 54% on average in Eucalyptus regnans. The study on the contribution of roots to total soil respiration showed that it is necessary to use hybrid techniques to separate and estimates the contribution of components of soil respiration; in this thesis’ case the use of collars and chambers in the field and respirometer in the laboratory was determinant in identifying root priming effect. Great spatial variation in respiration rates was measured both in the simple ecosystem of a Eucalyptus saligna plantation and as a result of fire disturbance at the Messmate 1 site supporting Eucalyptus obliqua and Eucalyptus radiata. Finally, a synthesis of the results of the whole thesis considered the effect of soil temperature on soil respiration and showed that contrary to what is commonly agreed by the Q10 model, respiration rates reached a plateau for temperatures between 16°C to 23°C.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Esberg, Camilla. "Phosphorus availability and microbial respiration across biomes from plantation forest to tundra /". Doctoral thesis, Umeå : Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-33732.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Selig, Marcus Franklin. "Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33866.

Texto completo
Resumen
The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three replicate .222 hectare stands planted using 3.05 by 3.05 meter spacing in 1980 at the Reynolds Homestead in Critz, VA. Using two different sample collection methods it was determined that soil carbon was evenly dispersed throughout thinned plots, and that random sampling techniques were adequate for capturing spatial variability. Soil carbon showed a significant negative correlation with soil depth (p=0.0001), and by testing the difference between intercepts in this relationship, it was determined that thinning significantly increased soil carbon by 31.9% across all depths (p=0.0004). However, after accounting for losses in aboveground wood production, thinning resulted in an overall 10% loss in stand carbon storage. However, this analysis did not take into account the fate of wood products following removal. Soil respiration, soil temperature, and soil moisture were measured every month for one year near randomly selected stumps and trees. In order to account for spatial variation, split plots were measured at positions adjacent to stumps and 1.5 meters away from stumps. Soil temperature and moisture were both significantly affected by thinning. Regression analysis was performed to determine significant drivers in soil CO2 efflux. Temperature proved to be the most significant driver of soil respiration, with a positive correlation in thinned and unthinned stands. When modeled using regression, thinning was a significant variable for predicting soil respiration (p < 0.0009), but explained only 3.4% of the variation. The effects of thinning were responsible for decreased respiration, however, when coupled with increased temperatures, soil respiration was elevated in thinned stands.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Russell, Kerri Ann. "Microbial and Environmental Drivers of Soil Respiration Differ Along Montane to Urban Transitions". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7718.

Texto completo
Resumen
In natural ecosystems, like deciduous and coniferous forests, soil CO2 flux or soil respiration is highly variable and influenced by multiple factors including temperature, precipitation, dissolved soil organic carbon (DOC), dissolved organic matter (DOM), and bacterial and fungal biomass and diversity. However, as the human population continues to grow rapidly, so too do urbanized landscapes with unknown consequences to soil respiration. To determine the extent urbanization influences seasonal shifts in microorganisms and environmental drivers alter soil respiration, we evaluated bacterial and fungal communities, soil physiochemical characteristics, and respiration in forested and urbanizing ecosystems in three watersheds across northern Utah, USA. Based on the next-generation sequencing of the 16s DNA and RNA, we found that montane bacteria were predominantly structured by season while urban bacteria were influenced by degree of urbanization. There was no apparent effect of season on montane fungi, but urban fungal communities followed patterns similar to urban bacterial communities. Bacterial diversity was sensitive to seasonality, especially in montane ecosystems, declining 21-34% from spring to summer and staying relatively low into fall, and fungal diversity was generally depressed in spring. Urban bacterial communities were differentiated by substantially more bacterial taxa with 62 unique OTUs within families structing phylogenetic differences compared with only 18 taxa differentiating montane communities. Similar to bacteria and fungi, DOC and ammonium concentrations fluctuated predominantly by season while these same parameters where highly variable among urban soils among the three watersheds. Structural components of DOM via parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrices show varying patterns between montane and urban systems with humic substance resistance to biodegradability found more dominantly in montane systems. Incorporating all soil chemical parameters, daily temperature and moisture, and fungal and bacterial diversity and richness in mixed linear effects models describing daily CO2 over all seasons, we found that a single model best described montane soil respiration, while individual watershed models best described urban respiration. Montane respiration was related to the availability of DOC, different DOM components, and rRNA-based bacterial diversity . Alternatively, urban respiration was influenced by either bacterial diversity and richness in our rapidly urbanizing environment, DOM characteristics and soil O2 in the more agricultural urban soils, or the DOM parameter humification index (HIX) in highly urbanized soils. Our results suggest that urbanization creates distinct bacterial and fungal communities with a single soil biotic or chemical parameter structuring soil respiration, while montane ecosystems select for similar bacterial and fungal communities with respiration sensitive to fluctuations in soil moisture, bacteria and the recalcitrance of carbon (C) resources.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hu, Duan. "Soil respiration following alternative site preparation treatments in a boreal mixedwood forest". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/MQ33389.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Maher, Ryan Matthew. "Soil respiration and plant growth across a chronosequence of tallgrass prairie reconstructions". [Ames, Iowa : Iowa State University], 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Nietz, Jennifer Goedhart. "Soil Respiration During Partial Canopy Senescence in a Northern Mixed Deciduous Forest". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1276543755.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Xu, Jianye. "Interannual Dynamics of Soil Respiration in Managed Oak Forests in Missouri Ozarks". University of Toledo / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1251397682.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Knox, Oliver Gimli Gunning. "Exploiting nitrate respiration to optimise antagonistic control of root disease in soil". Thesis, University of Aberdeen, 2000. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602312.

Texto completo
Resumen
In soils of high matric potential, low oxygen conditions often develop that favour disease development by many soil-borne plant pathogens. The introduction of a third party, or biocontrol agent, to suppress disease development would require that the agent remains metabolically active under such conditions. In the rhizosphere, plant roots not only supply carbon as an electron donor but cause a localised lowering of oxygen concentrations, conditions favourable for nitrate respiration. The effect of the addition of nitrate on the activity of antagonistic strains of Bacillus subtilis, Pseudomonas fluorescens and P. corrugata was studied in vitro on agar plates, but no significant (P 0.05) quantitative effect was observed . A sealed plate method, using aerobic, anoxic, and anaerobic conditions with 0, 1, 2.5, 5, 10 and 100mM nitrate concentrations was investigated using the B. subtilis strains. This assay tested the activity of antifungal volatiles (AFV) produced by the bacteria. The results indicated that nitrate led to an increased AFV production and/or activity against fungal pathogens under anoxic conditions with nitrate at or above 10 mM. To investigate root colonisation and the establishment of biocontrol colonies in the rhizosphere, lux marking of the biocontrol bacterial strains was undertaken. The transformed bioluminescent B. subtilis strains lost the ability to antagonise the test fungi on agar plates. This loss of antagonism appeared to be due to luciferase utilising metabolites involved in antibiosis and producing a low, but significantly different (P ?0.05) from background and parental strains level of luminescence. The effects of nitrate on a soil based biocontrol system were studied in greenhouse trials. Unfortunately, disease failed to develop, and the effects of the addition of nitrate could not be assessed. The potential involvement of nitrate in maintaining certain biocontrol aspects under conditions that favour pathogen attack seems likely from in vitro based studies. The removal of the antagonistic phenotype, from lux marked B. subtilis strains, raised questions as to the suitability of luciferase for use in this system and highlighted the need for careful monitoring and screening of genetically modified organisms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Moyano, Fernando Esteban. "Soil respiration fluxes and controlling factors in temperate forest and cropland ecosystems". [S.l. : s.n.], 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Xu, Jianye. "Interannual dynamics of soil respiration in managed oak forrests in Missouri Ozarks /". Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1251397682.

Texto completo
Resumen
Thesis (M.S.)--University of Toledo, 2009.
Typescript. "Submitted as partial fulfillment of the requirements for the Master of Science in Biology." "A thesis entitled"--at head of title. Bibliography: leaves 48-55.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wiseman, P. Eric. "Soil Carbon Dioxide Efflux Across Four Age Classes Of Plantation Loblolly Pine (Pinus taeda L.)On The Virginia Piedmont". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35770.

Texto completo
Resumen
Soil carbon dioxide efflux resulting from microbial and root respiration is a major component of the forest carbon cycle. We undertook this investigation to better understand the nature of soil carbon dioxide efflux of plantation loblolly pine, an important ecological and economical resource in the southeastern United States. Specifically, we hoped to learn how soil carbon dioxide efflux differs both spatially and temporally for four age classes of plantation loblolly pine on the Virginia piedmont. During a 12-month period, soil carbon dioxide efflux was repeatedly measured for four age classes of plantation loblolly pine using a dynamic, closed-chamber infrared gas analyzer. The age classes examined were 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands. Mean soil carbon dioxide efflux rates measured during the 12-month study were 1.72, 2.58, 2.84, and 2.90 micromole/sq m/s for 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands, respectively. Stand age had a significant effect on efflux rate during 10 of the 12 monthly sampling sessions. Additionally, mean efflux rates were consistently higher near the tree and a significant positional difference was detected during 8 of the 12 monthly sampling sessions. Mean soil carbon dioxide efflux rates, by position, for the 12-month study were 2.72 and 2.28 micromole/sq m/s for the near and away measurement positions, respectively. Based on monthly mean soil carbon dioxide efflux rates, annual carbon losses were estimated at 651, 976, 1074, and 1082 g C/sq m/yr for 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands, respectively. Regression analysis was used to examine the influence of soil and climatic factors on seasonal changes in soil carbon dioxide efflux. The most influential factors affecting soil carbon dioxide efflux during the 12-month study were soil temperature, soil moisture, stand age, and measurement position. We believe respiring roots significantly influence soil carbon dioxide efflux of plantation loblolly pine and account for differences observed between stands of different ages as well as spatial differences observed within a given stand.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tyree, Michael Christopher. "The Short-term Effects of Fertilization on Total Soil CO2 Efflux, Heterotrophic, and Autotrophic Respiration of Loblolly Pine (Pinus taeda L.)". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/34944.

Texto completo
Resumen

Fertilization is a common, cost effective treatment for increasing forest productivity within managed forests of the southeastern United States. However, little is known about how fertilization affects the below-ground processes that drive soil CO2 efflux in loblolly pine (Pinus taeda L.). A thorough understanding of below-ground carbon dynamics is necessary for the estimation of net ecosystem productivity and the carbon storage potential of these managed systems.

In April 2004, we began monitoring total soil CO2 efflux (EC), heterotrophic (RH), and root respiration (RR) in response to fertilization with diammonium phosphate (DAP). Respiratory components were measured prior to fertilization, weekly following fertilization, and bi-weekly after respiratory components stabilized using a dynamic closed chamber and an infrared gas analyzer. We found that EC differed significantly (P<0.0001) between fertilized and unfertilized plots, but the direction was dependent on date. In the early period of the study, fertilized plot values were lower than control plots. However, by the latter periods fertilized plot values returned to control levels except for one sampling date in March 2005 when fertilized plot values were greater then control plots. Heterotrophic respiration was consistently and significantly (P=0.0002) lower in fertilized plots. Root respiration was significantly (P=0.0597) increased in fertilized plots when analyzed over the study and showed a 20% increase due to fertilization. We concluded that an increase in RR and possibly root biomass was enough to balance the decrease in RH leading to no difference in EC later in the growing season.

We performed a pair of greenhouse studies to observe the effects of fertilization in the form of diammonium phosphate (DAP) on RR. The objectives were to determine how nutrient additions initially affect RR in one-year-old loblolly pine seedlings. Secondly, we wanted to determine if Captan [N-(trichloromethylthio) cyclohex-4-ene-1, 2-dicarboximide], a mild fungicide, could be used to reduce or eliminate ecto-mycorrhizae upon visual inspection. Both studies showed that initially, at a high rate (100 ppm N and 49 ppm P) of fertilization, RR was significantly (P<0.10) increased relative to seedlings that did not receive fertilization. This increase was only temporary with rates returning to, or decreasing below, control levels by the end of the study. No consistent trend was found between low (25 ppm N and 13 ppm P) and moderate (50 ppm N and 25 ppm P) rates of fertilization. Captan was shown to generally have no affect on RR. Captan and fertilization both showed (visual inspection) a decrease in fine-roots and mycorrhizae, which could explain the reduction in respiration rates observed in these treatments by the end of the studies.


Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Wong, Vanessa y u2514228@anu edu au. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes". The Australian National University. Faculty of Science, 2007. http://thesis.anu.edu.au./public/adt-ANU20080428.223144.

Texto completo
Resumen
Soil is the world’s largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.¶ Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-water relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶ In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus, as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶ Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.¶ The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.¶ The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nichols, Lara Kaitlin. "Relationships Among Soil Properties and Soil CO2 Efflux in a Loblolly Pine-Switchgrass Intercropped System". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51945.

Texto completo
Resumen
The components of soil CO2 efflux are affected by many soil properties including temperature, moisture, microbial abundance and activity, and other soil physical and chemical properties. Changes in these factors can result in high spatial and temporal variability of total soil CO2 efflux. Low molecular weight organic acids (LMWOAs), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), microbial biomass and activity were measured to evaluate the impact of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. Surface soil samples (0-15 cm) were collected on the bed (PSG-B), interbed (PSG-I) and edge (PSG-E) of pine-switchgrass intercropped treatments, as well as pine only (P-B) and switchgrass only (SG-I) treatments. Differences in most soil properties and processes of intercropped treatments were sporadic and most did not show clear trends. However, significant correlations between DOC, soil temperature, oxalic and acetic acids and soil CO2 efflux were present. In an multiple regression model these factors explained 57% of the variance in total soil CO2 efflux. Therefore we think that LMWOAs, as a labile component of DOC, are influencing total CO2 efflux because they are being consumed by microbial community, increasing heterotrophic respiration and as a result overall total CO2 efflux. The amount and distribution of labile C controls microbial community dynamics, heterotrophic respiration as well as the stabilization of soil C.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Comstedt, Daniel. "Explaining temporal variations in soil respiration rates and delta13C in coniferous forest ecosystems". Doctoral thesis, Örebro universitet, Institutionen för naturvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-2055.

Texto completo
Resumen
Soils of Northern Hemisphere forests contain a large part of the global terrestrial carbon (C) pool. Even small changes in this pool can have large impact on atmospheric [CO2] and the global climate. Soil respiration is the largest terrestrial C flux to the atmosphere and can be divided into autotrophic (from roots, mycorrhizal hyphae and associated microbes) and heterotrophic (from decomposers of organic material) respiration. It is therefore crucial to establish how the two components will respond to changing environmental factors. In this thesis I studied the effect of elevated atmospheric [CO2] (+340 ppm, 13C-depleted) and elevated air temperature (2.8-3.5 oC) on soil respiration in a whole-tree chamber (WTC) experiment conducted in a boreal Norway spruce forest. In another spruce forest I used multivariate modelling to establish the link between day-to-day variations in soil respiration rates and its δ13C, and above and below ground abiotic conditions. In both forests, variation in δ13C was used as a marker for autotrophic respiration. A trenching experiment was conducted in the latter forest in order to separate the two components of soil respiration. The potential problems associated with the trenching, increased root decomposition and changed soil moisture conditions were handled by empirical modelling. The WTC experiment showed that elevated [CO2] but not temperature resulted in 48 to 62% increased soil respiration rates. The CO2-induced increase was in absolute numbers relatively insensitive to seasonal changes in soil temperature and data on δ13C suggest it mostly resulted from increased autotrophic respiration. From the multivariate modelling we observed a strong link between weather (air temperature and vapour pressure deficit) and the day-to-day variation of soil respiration rate and its δ13C. However, the tightness of the link was dependent on good weather for up to a week before the respiration sampling. Changes in soil respiration rates showed a lag to weather conditions of 2-4 days, which was 1-3 days shorter than for the δ13C signal. We hypothesised to be due to pressure concentration waves moving in the phloem at higher rates than the solute itself (i.e., the δ13C–label). Results from the empirical modelling in the trenching experiment show that autotrophic respiration contributed to about 50% of total soil respiration, had a great day-to-day variation and was correlated to total soil respiration while not to soil temperature or soil moisture. Over the first five months after the trenching, an estimated 45% of respiration from the trenched plots was an artefact of the treatment. Of this, 29% was a water difference effect and 16% resulted from root decomposition. In conclusion, elevated [CO2] caused an increased C flux to the roots but this C was rapidly respired and has probably not caused changes in the C stored in root biomass or in soil organic matter in this N-limited forest. Autotrophic respiration seems to be strongly influenced by the availability of newly produced substrates and rather insensitive to changes in soil temperature. Root trenching artefacts can be compensated for by empirical modelling, an alternative to the sequential root harvesting technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Smith, Daniel Robert. "Soil respiration in a fire scar chronosequence of Canadian boreal jack pine forest". Thesis, University of Leicester, 2009. http://hdl.handle.net/2381/8268.

Texto completo
Resumen
This research investigates soil respiration (Rs) in a boreal jack pine (Pinus banksiana Lamb.) fire scar chronosequence at Sharpsand Creek, Ontario, Canada. During two field campaigns in 2006 and 2007, Rs was measured in a chronosequence of fire scars in the range 0 to 59 years since fire. Mean Rs adjusted for soil temperature (Ts) and soil moisture (Ms) (Rs T,M) ranged from 0.56 μmol CO2/m2/s (32 years post fire) to 8.18 μmol CO2/m2/s (58 years post fire). Coefficient of variation (CV) of Rs adjusted for Ts and Ms ranged from 20% (16 years post fire) to 56% (58 years post fire). Across the field site, there was a significant exponential relationship between Rs adjusted for soil organic carbon (Cs) and Ts (P = 1.24*10-06; Q10 = 2.21) but no effect of Ms on Rs adjusted for Cs and Ts for the range 0.21 to 0.77 volumetric Ms (P = 0.702). Rs T,M significantly (P = 0.030) decreased after burning mature forest, though no significant (P > 0.1) difference could be detected between recently burned and unburned young forest. Rs was measured in recently burned boreal jack pine fire scar age categories that differed in their burn history and there was a significant difference in Rs T,M between previously 32 v 16 year old (P = 0.000) and previously 32 v 59 year old (P = 0.044) scars. There was a strong significant exponential increase in S R T,M with time since fire (r2 = 0.999; P = 0.006) for the chronosequence 0, 16 and 59 years post fire, and for all these age categories, Rs T,M was significantly different from one another (P < 0.05). The Joint UK Land Environment Simulator (JULES) was used to model vegetation re-growth over successional time at Sharpsand Creek, though it appeared to perform poorly in simulating leaf area index and canopy height. JULES probably over estimated heterotrophic Rs at Sharpsand Creek when Ts corrected simulated values were compared with measured Rs T,M. The results of this study contribute to a better quantitative understanding of Rs in boreal jack pine fire scars and will facilitate improvements in C cycle modelling. Further work is needed in quantifying autotrophic and heterotrophic contributions to soil respiration in jack pine systems, monitoring soil respiration for extended time periods after fire and improving the ability of JULES to simulate successional vegetation re-growth.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Jian, Jinshi. "Global soil respiration: interaction with macroscale environmental variables and response to climate change". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/92195.

Texto completo
Resumen
The response of global soil respiration (Rs) to climate change determines how long the land can continue acting as a carbon sink in the future. This dissertation research identifies how temporal and spatial variation in environmental factors affects global scale Rs modeling and predictions of future Rs under global warming. Chapter 1 describes the recommend time range for measuring Rs across differing climates, biomes, and seasons and found that the best time for measuring the daily mean Rs is 10:00 am in almost all climates and biomes. Chapter 2 describes commonly used surrogates in Rs modeling and shows that air temperature and soil temperature are highly correlated and that they explain similar amounts of Rs variation; however, average monthly precipitation between 1961 and 2014, rather than monthly precipitation for a specific year, is a better predictor in global Rs modeling. Chapter 3 quantifies the uncertainty generated by four different assumptions of global Rs models. Results demonstrate that the time-scale of the data, among other sources, creates a substantial difference in global estimates, where the estimate of global annual Rs based on monthly Rs data (70.85 to 80.99 Pg C yr-1) is substantially lower than the current benchmark for land models (98 Pg C yr-1). Chapter 4 simulates future global Rs rates based on two temperature scenarios and demonstrates that temperature sensitivity of Rs will decline in warm climates where the level of global warming will reach 3°C by 2100 relative to current air temperature; however, these regional decelerations will be offset by large Rs accelerations in the boreal and polar regions. Chapter 5 compares CO2 fluxes from turfgrass and wooded areas of five parks in Blacksburg, VA and tests the ability of the Denitrification-Decomposition model to estimate soil temperature, moisture and CO2 flux across the seasons. Cumulatively, this work provides new insights into the current and future spatial and temporal heterogeneity of Rs and its relationship with environmental factors, as well as key insights in upscaling methodology that will help to constrain global Rs estimates and predict how global Rs will respond to global warming in the future.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sawada, Kozue. "Quantitative Analysis of Soil Microbial Respiration using a Concept of Stepwise Substrate Utilization". Kyoto University, 2010. http://hdl.handle.net/2433/120465.

Texto completo
Resumen
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第15422号
農博第1807号
新制||農||979(附属図書館)
学位論文||H22||N4521(農学部図書室)
27900
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 舟川 晋也, 教授 二井 一禎, 教授 北山 兼弘
学位規則第4条第1項該当
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Jenkins, Meaghan Edith Biological Earth &amp Environmental Sciences Faculty of Science UNSW. "Carbon cycling in sub-alpine ecosystems". Awarded by:University of New South Wales. Biological, Earth & Environmental Sciences, 2009. http://handle.unsw.edu.au/1959.4/44822.

Texto completo
Resumen
The relationship between temperature and soil respiration has been well explored although uncertainties remain. This thesis examined the relationship between temperature and rates of heterotrophic respiration in soils from three adjacent sub-alpine Australian vegetation types; woodland, shrubland and grassland. Temperature sensitivity of soil (Q10) has recently been a hotly debate topic, one side concluding that decomposition of recalcitrant, less labile components of soil organic matter are insensitive to temperature. Whilst others argue that there is no difference in the temperature sensitivities of labile and recalcitrant carbon pools. Robust modeling of rates of soil respiration requires characterization of the temperature response of both labile and recalcitrant pools. Laboratory incubation provides a means of characterizing the temperature response of rates of respiration whilst reducing the confounding effects encountered in the field, such as seasonal fluctuations in temperature, moisture and substrate supply. I used a novel system that allowed laboratory measurement of gas exchange in soils over a range of temperatures under controlled conditions. Measurements included CO2 efflux and O2 uptake over a range of temperatures from 5 to 40oC, characterization of temperature response and sensitivity, and respiratory quotients. Rates of heterotrophic respiration fitted both exponential and Arrhenius functions and temperature sensitivity varied and depended on the model used, vegetation type and depth in the soil profile. Long-term incubation indicated both labile and resistant pools of carbon had similar temperature sensitivities. Respiratory quotients provided a strongly predictive measure of the potential rate of decomposition of soil C, independent of the temperature response of respiration, providing a tool that may be used alongside derived parameters to help understand shifts in microbial use of C substrates. Vegetation type influenced soil chemical properties and rates of heterotrophic respiration. Rates of respiration correlated well with concentrations of carbon and nitrogen as has been previously observed, unlike previous studies however a positive correlation was observed between indices of plant available phosphorus and respiration. The soils examined were from three adjacent vegetation types formed on common geology, I concluded that vegetation type had a significant influence on soil, in contrast to the commonly held view by ecologists that soil type drives patterns in vegetation. Climatic effects such as longer, dryer hotter summer, reduced snow cover and increased incidence of extreme weather events such as frosts and bushfire are likely to drive patterns in vegetation in this region and therefore have a significant impact on carbon cycling in Sub-alpine Australian soils.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Stielstra, Clare M. "Quantifying the Role of Hydrologic Variability in Soil Carbon Flux". Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/238914.

Texto completo
Resumen
Soil carbon (C) is the largest terrestrial carbon pool. While inputs to this system are fairly well constrained, the diverse factors driving soil C efflux remain poorly understood. Carbon in surface soils is mobilized via two distinct pathways: CO₂ gas flux and dissolved C flux. The goal of this study was to quantify the role of hydrologic variability in mobilizing carbon as gaseous and dissolved fluxes from near-surface soils, and to determine their relative magnitudes. Data were collected through 2010 and 2011 from two subalpine sites in Arizona and New Mexico. I observed no significant variability in dissolved fluxes, and these values were low at all sites. In contrast, CO₂ fluxes were large (from 0.22 g C m⁻² d⁻¹ to 5.27 g C m⁻² d⁻¹) and varied between sites and between years. My results suggest that in arid montane forests soil carbon flux is critically linked to water availability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Al, Fassi Fahad Abdulrahman. "The microbial ecology of heathland soil with special reference to factors affecting microbial biomass and activity". Thesis, University of Sheffield, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Rühr, Nadine Katrin. "Soil respiration in a mixed mountain forest : environmental drivers and partitioning of component fluxes /". [S.l.] : [s.n.], 2009. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18297.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Murphy, Meaghan Thibault. "Biotic and abiotic controls on soil respiration in a biodiversity plantation in the tropics". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97978.

Texto completo
Resumen
The Sardinilla plantation is a long-term facility for studying the links between tree species diversity and ecosystem function. Six native tree species were planted in 2001 in plots containing 1, 3 or 6 species. Soil respiration (SR) measurements were conducted from March to December 2004 on tree pairs. ANOVAs with repeated measure on days were used to test the main effects of species (monocultures), pair (single and two-species pairs), plot (pairs in monoculture, three-, and six-species plots), and season (dry vs. early wet season). ANCOVAs were run for each effect to determine possible biotic and abiotic covariates, including root, tree, and microbial biomass, soil moisture, surface temperature, and bulk density. Significant season and pair effects accounted for 89% and 2% of the variability in SR. Driven by soil moisture, SR increased seven fold during the seasonal transition. In the dry and wet season monocultures had significantly higher SR than two-species pairs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wright, Caroline. "Multiple Substrate-Induced Respiration and Isothermal Calorimetry : Applicability in Risk Assessment of Contaminated Soil". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-321192.

Texto completo
Resumen
At present, soils face great threats. Consequences of human activities, such as climate change, acidification and contamination result in decreased soil health. This is a threat to human health and well-being, since our society is dependent on soil ecosystem services. The soil ecosystems provide resources, such as food and fresh water, regulate the climate and play key parts in important life supporting biological processes, e.g. cycling of carbon and nutrients. Due to increased awareness of the threats that soils face, and its importance to humans, soil quality monitoring has recently received increased attention. Microorganisms run most biological processes in the soil, such as decomposition of organic material and nutrient cycling. Thus, microbial activity and diversity are considered useful biological indicators for soil quality monitoring. These biological properties can be examined using different methods. The aim of the project was to evaluate the potential of multiple substrate-induced respiration (MSIR), using the MicroRespTM system, and isothermal calorimetry for determining microbial activity and diversity in soils contaminated with copper (Cu) and polycyclic aromatic hydrocarbons (PAH). Thereby, the methods’ applicability in risk assessment of contaminated soil could be decided. MSIR is considered appropriate for determining microbial activity and functional diversity, while isothermal calorimetry has not been tested as much in this area. The calorespirometric ratio (produced heat per unit CO2) was calculated to evaluate potential relationships between heat and CO2 at different contamination levels. Although there was some variation between the methods, Cu had a clear effect on both microbial activity and functional diversity. Both methods were thus considered applicable in risk assessment of soil contaminated with Cu. The impact of PAH appeared to be more complex, the effects on microbial activity varied and PAH had little significant effect on functional diversity. Neither of the methods were therefore considered applicable for assessment of soil contaminated with PAH. The calorespirometric ratio did not provide useful results, and cannot be recommended for risk assessment purposes at present.
I dagsläget utsätts marken för stora hot. Följder av mänsklig aktivitet, så som klimatförändringar, försurning och förorening försämrar markens kvalitet. Detta är ett hot mot människors hälsa och välmående, eftersom vårt samhälle är beroende av markens ekosystemtjänster. Markens ekosystem förser oss med exempelvis mat och rent vatten, reglerar klimatet, och har nyckelroller i viktiga biologiska processer, exempelvis cirkulering av kol och näringsämnen. På grund av ökad medvetenhet om hoten mot marken samt dess betydelse för människan, har kontroll av markens kvalitet börjat få ökad uppmärksamhet. Mikroorganismer sköter de flesta biologiska processer som sker i marken, så som nedbrytning av organiskt material och cirkulering av näringsämnen. Därmed anses mikrobiell aktivitet och diversitet vara lämpliga biologiska indikatorer vid kontroll av markens kvalitet. Dessa biologiska egenskaper kan mätas med flera olika metoder. Syftet med projektet var att utvärdera potentialen i att använda multipla substrat-inducerad respiration (MSIR), genom att använda systemet MicroRespTM, samt isotermisk kalorimetri för att mäta mikrobiell aktivitet och funktionell diversitet i mark förorenad med koppar (Cu) och polycykliska aromatiska kolväten (PAH). Därmed kunde metodernas tillämplighet i riskbedömning av förorenad mark bestämmas. MSIR anses vara en lämplig metod i syfte att undersöka mikrobiell aktivitet och funktionell diversitet, medan isotermisk kalorimetri inte är lika beprövat. Kvoten mellan värmeproduktion och respirerad CO2, the calorespirometric ratio, beräknades för att utvärdera eventuella samband mellan värmeproduktion och respiration vid olika föroreningskoncentrationer. Trots att det förekom viss variation mellan metoderna, hade Cu en tydlig effekt på både mikrobiell aktivitet och funktionell diversitet. Båda metoder ansågs därför vara tillämpbara i riskbedömning av Cu-förorenad jord. PAH hade varierande effekt på mikrobiell aktivitet och liten signifikant effekt på funktionell diversitet. Ingen av metoderna ansågs därför tillämpbar i riskbedömning av jord förorenad med PAH. The calorespirometric ratio tillhandahöll ej användbara resultat, och kunde därmed inte rekommenderas i riskbedömningssyfte.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Almeida, Risely Ferraz [UNESP]. "CO2 emission and O2 uptake of soil under different systems". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/149886.

Texto completo
Resumen
Submitted by RISELY FERRAZ ALMEIDA (rizely@gmail.com) on 2017-03-22T01:11:45Z No. of bitstreams: 1 Tese_Risely_Ferraz_Almeida.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5)
Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-22T20:23:04Z (GMT) No. of bitstreams: 1 almeida_rf_dr_jabo.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5)
Made available in DSpace on 2017-03-22T20:23:04Z (GMT). No. of bitstreams: 1 almeida_rf_dr_jabo.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5) Previous issue date: 2017-02-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O oxigênio (O2) e o dióxido de carbono (CO2) no solo são os dois principais gases relacionados com a atividade dos microorganismos no solo. Assim, esta tese foi desenvolvida para observar a concentração e a relação entre a concentração do CO2 e O2 sob diferentes sistemas de resíduos. Para isso, realizamos dois experimentos de solo no Brasil e nos EUA, respectivamente. O primeiro experimento foi desenvolvido para examinar a relação entre fluxo de CO2 (FCO2) e o fluxo de O2 (FO2) usando a umidade do solo e o O2 como um predictor da respiração do solo em uma área de cana-de-açúcar sob diferentes manejos de resíduos (colheita mecânica - GH versus colheita queimada – BH). Portanto, os resultados do primeiro experimento estão descritos no Capítulo 2 e sendo intitulado de "Uso da captura de O2 como índice de respiração de CO2 em áreas de cana-de-açúcar sob diferentes manejos". O segundo experimento do solo observou o impacto do biochar na emissão ou sorção de CO2 e O2 nos solos. Assim, foram estudados três tipos de solos (Rosemount - RM, Potting Sol Sunshine - PS e UM), cinco biochars diferentes (biochar de chip de pinho - ICM, biochar de Carvalho Oak Royal - RO, biochar Acurel ativado - AAC, biochar de Bambu - B; biochar de Macadâmia - MC) e o tratamento controle (solo sem biochar). Consequentemente, os resultados foram descritos no Capítulo 3 e intitulado "Como a captura de O2 pode nos ajudar a entender os processos de sorção de CO2 via biochar?". Assim, nós podemos concluir com os nossos resultados que a concentração e relação entre FCO2 e FO2 dependem dos diferentes sistemas e condições dos solos estudados, tais como: manejo de resíduos de culturas do solo, umidade do solo e uso de biochar. O FO2 está positivamente correlacionado com o FCO2 via atividade biológica e com valores de coeficientes respiratório (RQ) próximos de 1,0. Além disso, podemos observar que valores de RQ maiores que 1 são resultados dos fluxos de troca solo-gás após precipitação ou maior disponibilidade de O2 no meio. Assim, o FO2 pode ser utilizado como um índice para categorizar uma fonte de respiração de CO2. Para concluir, o biochar pode ser utilizado para sequestrar CO2 da atmosfera em curto período de tempo. No entanto, acreditamos que mais estudos devem ser desenvolvidos para elucidar a sorção de CO2 e O2 pelo biochar e suas reações (biológicas e/ou químicas) quando adicionado biochar no solo.
The soil O2 and CO2 concentration are the two most important gases related to soil microorganisms. Thus, this thesis was developed to observe the concentration and relationship between carbon dioxide (CO2) and oxygen (O2) under different residue systems. For that, we run two soil experiments in Brazil and the USA, respectively. The first experiment was developed to examine the relationship between CO2 and O2 using soil moisture and O2 as a soil respiration predictor in a sugarcane area under different managements of residues (mechanical harvesting - GH versus straw burning - BH). Therefore, the first experimental results are described in the Chapter 2 and entitled “Use of O2 uptake as an index of CO2 respiration in sugarcane areas under different managements”. We run the second soil experiment measuring biochar’s impact on CO2 production or sorption and O2 uptake in amended soils. Thus, we studied three soil types (Rosemount - RM; Potting soil Sunshine - PS; and UM) and five different biochars (Pine chip biochar - ICM; Royal Oak hardwood lump charcoal - RO; Accurel activated charcoal - AAC; Bamboo - B; and Macadamia nut - MC) and control treatment (Soil without biochar). Consequently, the results are described in the Chapter 3 and entitled “How O2 uptake can help us understand the CO2 sorption processes by biochar?”. Thus, we can conclude with our results that the concentration and relationship between FCO2 and FO2 depend on different systems and soil conditions, for example: soil crop residue managements, soil moisture and use of biochar. The FO2 is positively correlated with FCO2 at biological condition with respiratory quotient (RQ) values close to 1.0. Moreover, we can observe that RQ values higher than 1 are results of soil–gas exchange fluxes after precipitation or higher available on O2. Thus, the FO2 can be used as an index for categorizing the source of FCO2 respiration. To finish, we can observe that the biochar can be used to sequester CO2 from the atmosphere by the absence of biological activities in a short period of time. However, we believe that more study should be developed to elucidate the CO2 and O2 sorption by biochars and their reactions (biological and/or chemical) when added biochar in soil.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Dennis, Wilson Dennis. "Estimation of Carbon Dioxide emissions from forest soils based on CO2 concentrations". Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33240.

Texto completo
Resumen
Forest soil is an important source of atmospheric CO2. Emission of CO2 from soil is the result of respiration of plant roots and soil organisms (Autotrophic and Heterotrophic respiration). This soil CO2 emission has a variation throughout the year with maximum emissions being in the summer. However, the seasonal variation affected by the external factors is not fully known. The aim of this thesis is to analyze a relationship between concentration of CO2 in the soil-atmosphere and CO2 emissions to the aboveground atmosphere. When knowing the relationship between CO2 concentration in the soil-atmosphere and the emission of CO2 from the soil atmosphere, a function (equation) can be established. Usually, the best fit is considered to establish the relationship. With the equations obtained, it is possible to calculate CO2 emissions using data different projects, where only soil-atmosphere CO2 concentrations were determined. Using the relationships, emissions rates in different soil types and in forest transect have been analyzed for a large number of samples. The effect of nitrogen deposition on CO2 emissions and seasonal variation of CO2 emission has also been studied. The sampled sites chosen for this study were located in different parts of Southern Scandinavia and Germany. A closed chamber was used to measure CO2 emission from soil. Soil CO2 concentrations were measured at every station and the equations were established. Finally, these relationships were used for analyses and comparison of the sites. An equation (best fit) obtained was used to calculate the emission values of CO2. The soil texture had a great influence on the CO2 from the soil besides the atmospheric pressure and temperature variations during the seasons. It is concluded that, therefore the soil texture and had a great influence on the CO2 emission from the soil besides the atmospheric pressure and temperature variations during the season. When knowing the equation between CO2 concentration and emission for a special type of soil, it is possible to estimate emissions based on CO2 concentrations. Therefore large scale sampling of CO2 concentrations could be done and this will facilitate the inventories carried out in e.g. global change studies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gough, Christopher Michael. "Quantification and Physiology of Carbon Dynamics in Intensively Managed Loblolly Pine (Pinus taeda L.)". Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11232.

Texto completo
Resumen
Loblolly pine (Pinus taeda L.) occupies 13 million hectares in the United States and represents a critical component of the global carbon (C) cycle. Forest management alters C dynamics, affecting the C sequestration capacity of a site. Identifying drivers that influence C cycling, quantifying C fluxes, and determining how management alters processes involved in C cycling will allow for an understanding of C sequestration capacity in managed forests. Objectives of the first study included (1) investigating environmental, soil C, root, and stand influences on soil CO2 efflux on the South Carolina coastal plain and (2) quantifying soil CO2 efflux over a rotation in loblolly pine stands located on the South Carolina coastal plain and the Virginia piedmont. In relation to the first objective, temporal variation in soil CO2 efflux was most highly related to soil temperature. Spatial and temporal variability in soil CO2 efflux was weakly related to soil C and root biomass, and not related to coarse woody debris, stand age, stand volume, or site index [Chapter 2]. Soil CO2 efflux was not related to stand age on the South Carolina sites while efflux was positively related to age on the Virginia sites. Cumulative soil C efflux on the South Carolina sites over 20 years is an estimated 278.6 Mg C/ha compared with an estimated 210.9 Mg C/ha on the Virginia sites [Chapter 3]. Objectives of the second study were (1) to investigate short-term effects of fertilization on processes permitting enhanced growth in loblolly pine and (2) to determine the short-term effects of fertilization on autotrophic, heterotrophic, and soil respiration. Major results from the study include the finding that fertilization caused a transient rise in photosynthetic capacity, which paralleled changes in foliar nitrogen. Leaf area accumulation and enhanced growth following fertilization was partly due to enhanced C fixation capacity [Chapter 4]. Fertilization altered the contribution of autotrophic and heterotrophic respiration to total soil CO2 efflux. Enhanced specific root respiration was short-lived while suppressed microbial respiration following fertilization was maintained over the course of the nearly 200-day study. Respiring root biomass growth increased total soil respiration over time [Chapter 5].
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Oliver, Viktoria. "The effect of land-use on soil organic carbon dynamics in the Peruvian Andes". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7064.

Texto completo
Resumen
Soil carbon storage in tropical ecosystems is important in the global carbon cycle, yet consensus is lacking on how soil organic carbon stocks are altered under anthropogenic land-use change. This thesis seeks to quantify soil carbon stocks, the associated soil carbon emissions and explores the drivers of soil respiration in managed tropical Andean lands over a 2600 m elevation gradient. It investigates: grazing and burning on high altitude montane grasslands, burning in montane forests and agriculture in premontane forests. Changes among land-uses were quantified using belowground carbon stocks, the carbon distribution among density fractions, soil carbon emissions and environmental drivers of soil respiration. Soil respiration was a good proxy of soil carbon loss in premontane pastures and montane grassland soils. The total carbon stocks on some land-uses appeared to be unaffected but the distribution of carbon within the soil had changed and even when there were no net changes in soil carbon emissions, the drivers of respiration were different. The synergistic effect of burning and grazing in montane grasslands was the most detrimental to soil carbon stocks, whereas montane forests were unaffected. In the premontane elevation, soil carbon loss was dependent on the type of agricultural practice but the succession of secondary forest allowed soil carbon to recover to similar levels measured in the mature forest. These findings highlight the fact that although land-use does not always appear to have an obvious effect on total soil carbon stocks, the loss of carbon from short-term labile pools can cause higher carbon emissions and dominate soil-atmospheric feedbacks. Furthermore, the drivers of soil respiration and the synergistic relationship between soil moisture and temperature alter under different land uses. These factors should be taken into consideration with regards to predictions of regional temperature/precipitation climate change and soil carbon management policy in order to arrive at more realistic decisions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

YAMAZAWA, Hiromi, Jun MORIIZUMI, Masashi HACHIYA, 弘実 山澤, 純. 森泉 y 真史 蜂谷. "炭素同位体比を用いた森林土壌呼吸中の根呼吸の評価". 名古屋大学年代測定資料研究センター, 2010. http://hdl.handle.net/2237/14743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Reynolds, Lorien. "Soil-Climate Feedbacks: Understanding the Controls and Ecosystem Responses of the Carbon Cycle Under a Changing Climate". Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20465.

Texto completo
Resumen
Soil organic matter (SOM) decomposition and formation is an important climate feedback, with the potential to amplify or offset climate forcing. To understand the fate of soil carbon (C) stores and fluxes (i.e., soil respiration) under future climate it is necessary to investigate responses across spatial and temporal scales, from the ecosystem to the molecular level, from diurnal to decadal trends. Moreover, it is important to question the assumptions and paradigms that underlie apparently paradoxical evidence to reveal the true nature of soil-climate feedbacks. My dissertation includes research into the response of soil respiration in Pacific Northwest prairies to warming and wetting along a natural regional climate gradient (Chapter II), and then delves deeper into the mechanisms underlying SOM decomposition and formation, examining the temperature sensitivity of SOM decomposition of prairie soils that were experimentally warmed for ~2 yr, and a forest soil in which litter-inputs were manipulation for 20 yr (Chapter III), and finally testing soil C cycling dynamics, including mineral-associated C pools, decomposition dynamics, and the molecular nature of SOM itself, under litter-manipulation in order to understand the controls on SOM formation and mineralization (Chapter IV). This dissertation includes previously published and unpublished coauthored material; see the individual chapters for a list of co-authors, and description of contributions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

McElligott, Kristin Mae. "Soil Respiration and Decomposition Dynamics of Loblolly Pine (Pinus taeda L.) Plantations in the Virginia Piedmont". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/75154.

Texto completo
Resumen
Forests of the southeastern U.S. play an important role in meeting the increasing demand for forest products, and represent an important carbon (C) sink that can be managed as a potential tool for mitigating atmospheric CO2 concentrations and global climate change. However, realizing this potential depends on full accounting of the ecosystem carbon (C) budget. The separate evaluation of root-derived, autotrophic (RA) and microbially-derived heterotrophic (RH) soil respiration in response to management and climate change is important, as environmental and ecological factors often differentially affect these components, and RH can be weighed against net primary productivity (NPP) to estimate the C sink or source status of forest ecosystems. The objective of this research was to improve the quantitative and mechanistic understanding of soil respiratory fluxes in managed loblolly pine (Pinus taeda L.) plantations of the southeastern U.S. To achieve this overall objective, three studies were implemented to: 1) estimate the proportion and seasonality of RH:RS in four stand age classes, and identify relationships between RH:RS and stand characteristics 2) evaluate the effects of forest nutrient management and throughfall reduction on factors that influence RH and decomposition dynamics, including litter quality, microbial biomass, and enzyme activity and 3) evaluate the sensitivity of sources of RH (mineral soil-derived heterotrophic respiration; RHM, and leaf litter-derived heterotrophic respiration; RHL) to varying soil and litter water content over the course of a dry down event, and assess whether fertilization influences RH. Stand age and measurement season each had a significant effect on RH:RS (P < 0.001), but there were no interactive effects (P = 0.202). Mean RH:RS during the 12-month study declined with stand age, and were 0.82, 0.73, 0.59, and 0.50 for 3-year-old, 9-year-old, 18- year-old, and 25-year-old stands, respectively. Across all age classes, the winter season had the highest mean RH:RS of 0.85 while summer had the lowest of 0.55. Additionally, there were highly significant (P < 0.001) and strong (r > 0.5) correlations between RH:RS and peak LAI, stem volume, and understory biomass. Fertilization improved litter quality by significantly decreasing lignin:N and lignin:P ratios, caused a shift in extracellular enzyme activity from mineral soil N- and P-acquiring enzyme activity to litter C-acquiring enzyme activity, and increased microbial biomass pools. Throughfall reduction decreased litter quality by increasing lignin:N and lignin:P, but also increased C-acquiring enzyme activity. RHL was more sensitive to water content than RHM, and increased linearly with increasing litter water content (R2 = 0.89). The contribution of RHL to RH was greatest immediately following the wetting event, and decreased rapidly to near-zero between three – 10 days. RHM also had a strong relationship with soil water content (R2 = 0.62), but took between 200 – 233 days to attain near-zero RHM rates. Fertilization had no effect on RHM (P = 0.657), but significantly suppressed RHL rates after the wetting event (P < 0.009). This research provides estimates of RH:RS in managed loblolly pine systems that can be used to improve regional ecosystem C modeling efforts, and demonstrates the need to consider the impact of stand age and seasonal patterns to identify the point at which plantations switch from functioning as C sources to C sinks. Additionally, it demonstrates that the controls over RH are dynamic and influenced in the short-term by fertilization and changed precipitation regimes, with the greatest impact on properties affecting litter RH compared to mineral soil. Future research should work to improve the mechanistic understanding of the seasonal and spatial variability of RH and related controlling biotic and abiotic parameters to remedy the variability in existing RS and ecosystem C models. Understanding how management and climate change may impact factors that control RH will ultimately improve our understanding of what drives changes in forest C fluxes.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Heim, Brett Christopher. "Partitioning soil respiration in response to drought and fertilization in loblolly pine: laboratory and field approaches". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25757.

Texto completo
Resumen
An understanding of ecosystem-level carbon (C) sequestration, or net ecosystem production (NEP), requires the separation of heterotrophic, microbial respiration (RH) from autotrophic, root-derived respiration (RA) as the components of RS (i.e., NEP = NPP - RH). However, separating these two sources in situ has been problematic since they are closely coupled. This study utilizes two similarly aged Pinus taeda L. stands, 8 and 9 years-old, aimed at quantifying these two respiration components through in-situ root severing. In order to use root-severing treatments to separate RS into RH and RA components, confirmation of carbohydrate depletion coupled to RA decline is crucial. This study evaluated the changes in CO2 flux rates and carbohydrate supply upon root severing in Pinus taeda L. using a controlled laboratory validating a two-part field study. The first field study used root-severing cores to test in-situ if respiration components can be attained based on the depletion of carbohydrate supply. The second field study was aimed at how future changes in climate might affect the ability of forests to store C and how modern forestry practices might affect changes and was conducted over the course of two installations, spring and summer 2012. In this study we examined the effects of fertilization (0 and 100.9 kg N ha-1 ) and throughfall reduction (0 and -30%) on total soil respiration (RS) as well as the heterotrophic contribution to RS, in a fully replicated (n=4), 2x2 factorial design. In the controlled lab experiment RS and RA declined by 86% and 95% respectively by the end of an 86 day trial and NSC carbohydrates declined by 60% for soluble, 29% for insoluble, and 43% for total (soluble + insoluble). The decline of RA was highly correlated to with the decline of NSC’s at 0.90, 0.69 and 0.93 for soluble, insoluble and total, respectively. The companion field study revealed a mean decrease 21±0.5% of over the final three dates when severed root respiration stabilized. In the second study, testing throughfall reduction and fertilization levels there were no fertilization by throughfall reduction interactions on the contribution of RH to RS in either the spring or summer; however, the main effect of throughfall reduction was significant in the spring. During the spring, the mean contribution of RH to RS for ambient throughfall plots was 96±6.4%, while the mean contribution under throughfall reduction was 68±1.9%. During the summer, there were no differences among treatments and the overall contribution of RH to RS was 78±1.6%. Collectively, both of these studies revealed that the severing of roots from their primary energy source and the subsequent depletion of stored NSC that the use of in-situ methods allows for the quantification of soil respiration components RA and RH. Using these estimates to model NEP in the short-term can be variable by season, however, long-term monitoring may simplify future NEP modeling scenarios
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Stark, S. (Sari). "Reindeer grazing and soil nutrient cycling in boreal and tundra ecosystems". Doctoral thesis, University of Oulu, 2002. http://urn.fi/urn:isbn:9514266927.

Texto completo
Resumen
Abstract In northernmost Fennoscandia, grazing by reindeer (Rangifer tarandus L.) has a substantial impact on the vegetation of boreal forests and arctic-alpine tundra heaths, which are reflected in below-ground processes, such as nutrient mineralization and soil organic matter decomposition. In the present thesis, the effects of reindeer grazing on soil nutrient cycling were studied by comparing grazed situation with an ungrazed control area in ten boreal forests and six arctic-alpine tundra heaths. In boreal forests, reindeer grazing reduced microbial respiration in both the oligotrophic and mesotrophic study areas, indicating a deficiency of labile substrates for the soil microbes due to reindeer grazing. Simultaneously, there was heterogeneity in the impact on nitrogen mineralization rates as at some sites, mineralization was enhanced by grazing. The fertilization effect of urine and faeces can therefore be strong enough a factor to outweigh a reduction in quality of soil organic matter. In the oligotrophic forests, low soil moisture content in the grazed areas could sometimes limit the mineralization rates even when the potential for mineralization was enhanced by grazing. In the tundra ecosystems, there was spatial variation in the impact of grazing on microbial respiration and nitrogen mineralization. Low grazing intensity occurring outside the growing season had a retarding impact on nutrient cycling in both unfertilized, nutrient-poor and fertilized, nutrient-rich conditions. In contrast, a relatively high grazing intensity enhanced the mineralization rates in two nutrient-poor and two nutrient-rich tundra heaths. When three different grazing intensities were compared in one oceanic, nutrient-rich and one continental, nutrient-poor tundra heath, the strongest positive effect of grazing on soil nutrient cycling occurred in the heavily grazed areas. The data do not support the assumption that soil nutrient availability regulates whether herbivores enhance or retard nutrient cycling in the soil. Instead, the net effect of grazing is determined by the balance between the underlying mechanisms that may work at opposite directions. The most important of these mechanisms are the grazer-mediated impact on the decomposability of the dominant vegetation and fertilization by urine and faeces. The duration, intensity and seasonal timing of the grazing seem to be important factors that regulate whether reindeer grazing enhances or retards soil nutrient cycling in each specific area. Due to the high spatial and temporal variation in the effects of grazing observed in this study, it is not possible to generalize the overall impact of grazing. Further study is required in order to determine the exact conditions under which grazing enhances or it retards soil nutrient cycling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Pangle, Robert E. "Soil Carbon Dioxide Efflux in Response to Fertilization and Mulching Treatments in a Two-Year-Old Loblolly Pine (Pinus taeda L.) Plantation in the Virginia Piedmont". Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/36359.

Texto completo
Resumen
Due to concern over the increasing concentration of carbon dioxide in the atmosphere, forest researchers and managers are currently studying the effects of varying silvicultural and harvesting practices on the carbon dynamics of intensely managed forest ecosystems. Soil carbon dioxide efflux resulting from soil microbial activity and root respiration is one of the major components of the total carbon flux in forested ecosystems. In an effort to examine the response of soil carbon dioxide efflux to changes in soil factors, nutrient availability, temperature, and moisture, soil respiration rates were measured monthly over an entire year in a two-year-old loblolly pine (Pinus taeda L.) plantation subjected to fertilization and mulching treatments. A dynamic, closed-chamber infrared gas analysis system was used to measure efflux rates from plots treated with one of four treatment combinations including: nitrogen (115 kg/ha) and phosphorus (11.5 kg/ha) fertilization with black landscape cloth (mulch), fertilization without mulch, mulch without fertilization, and no treatment (control). For each treatment combination, plots were established at the seedling base and 1.22 m away from the seedling base to examine the effect of seedling roots on soil carbon dioxide efflux rates. Soil temperature and moisture were measured at each chamber position monthly and soil coarse fragments, soil nutrient levels, percent carbon, root biomass and coarse woody debris were measured beneath 64 chambers at the end of the study. Fertilization had no significant effect on efflux rates during any of our monthly sampling sessions despite the fact that fertilized seedlings experienced significant increases in both above and belowground biomass. Conversely, regression analysis of growing season soil carbon dioxide efflux rates revealed a slightly negative correlation with both total seedling nutrient uptake and biomass. Rates in plots with mulching were significantly higher than rates from non-mulched plots during five monthly measurement sessions, and higher rates in mulched plots during winter months was attributable to warmer soil temperatures. Rates at the seedling base were always significantly higher than rates in plots away from the seedling. Although rates were always higher at the seedling base, the variability observed was only weakly correlated with the amount of pine roots present beneath respiration chambers. Utilizing soil temperature and moisture, soil carbon, and cuvette fine root biomass in a regression model explained 54% of the variance observed in efflux rates across the yearlong study period. Soil temperature alone explained 42.2% of the variance, followed by soil carbon and soil moisture at 5.2% and 2.7% respectively. The amount of pine fine roots under measurement chambers accounted for only 2.4% of the variance. An additional 1.5% was explained by other factors such as soil phosphorus, coarse woody debris, non-pine root biomass, and soil calcium. An examination of the factors affecting the spatial patterns of soil carbon dioxide efflux revealed that total soil carbon and the amount of fine pine root biomass beneath cuvette base rings explain 38% and 11% respectively, of the observed variability in mean annual soil carbon dioxide efflux from differing plots. The most influential factor affecting soil carbon dioxide efflux during the yearlong study period was soil temperature and modeling of seasonal soil carbon dioxide efflux rates from managed forests using both soil temperature and moisture should be achievable with the establishment of data sets and statistical models covering a range of sites differing in productivity, stand age, and management intensity. The establishment of data sets and statistical models across a variety of forest sites should account for the changing influence of soil carbon levels, aboveground biomass, microbial activity, organic matter inputs, and root biomass on soil carbon dioxide efflux.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Teixeira, Daniel De Bortoli [UNESP]. "Incertezas na estimativa da variabilidade espacial da emissão de CO2 do solo e propriedades edáficas em área de cana crua". Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/88232.

Texto completo
Resumen
Made available in DSpace on 2014-06-11T19:23:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-22Bitstream added on 2014-06-13T19:49:59Z : No. of bitstreams: 1 teixeira_db_me_jabo.pdf: 508270 bytes, checksum: 93d2af6f4bf67e9aab6a84ffe3f4ac1a (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A emissão de CO2 do solo (FCO2) apresenta alta variabilidade espacial, sendo devida a grande dependência espacial existente nas propriedades do solo que a influenciam. Neste estudo objetivou-se (i) caracterizar e relacionar a variabilidade e a distribuição espacial da FCO2, temperatura do solo, porosidade livre de água (PLA), teor de matéria orgânica do solo (MO) e densidade do solo (Ds), (ii) avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária (KO) e simulação sequencial Gaussiana (SSG), e (iii) avaliar a incerteza na predição da variabilidade espacial das FCO2 e demais propriedades utilizando a SSG. O estudo foi conduzido em uma malha amostral regular de 60 x 60 m2 com 141 pontos, com espaçamento mínimo variando de 0,50 a 10 m, instalada em área de cana-de-açúcar. Nestes pontos foram avaliados a FCO2, temperatura do solo, PLA, determinadas com base na média de 07 dias de avaliação, MO e Ds. Todas as variáveis apresentaram estrutura de dependência espacial, sendo ajustados modelos Gaussianos, esféricos e exponenciais. A configuração da malha amostral e possivelmente a presença de espessa camada de resíduos da cultura sobre o solo influenciaram a estrutura de variabilidade espacial da FCO2, temperatura e MO. FCO2 apresentou correlações positivas com a MO (r = 0,25, p < 0,05) e PLA (r = 0,27, p < 0,01) e negativa com a Ds (r = - 0,41, p < 0,01). No entanto, quando os valores digitais estimados espacialmente (N=8.833) são considerados, a PLA passa a ser a principal variável responsável pelas características espaciais da FCO2, apresentando correlação de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas, melhor reprodução das funções de distribuição acumuladas (fdac), e dos variogramas em comparação...
The soil CO2 emission (FCO2) has high spatial variability, which caused due to the strong spatial dependence in soil properties that influence it. This study aimed to (i) to characterize the variability and spatial distribution of FCO2, soil temperature, air-filled pore space (AFPS), soil organic matter (OM) and soil bulk density (BD) and related properties, (ii) evaluate the accuracy of the results provided by the method of ordinary kriging (OK) and sequential Gaussian simulation (SGS), and (iii) evaluate the uncertainty in predicting the spatial variability of FCO2 and other properties using the SSG. The study was conducted on an regular sampling grid with 141 points, with spacing ranging from 0.50 to 10 m, installed in a sugarcane area. In this place were evaluated FCO2, soil temperature, AFPS, were based on the average of 07 days of evaluation, OM and BD. All variables showed spatial dependence structure, and models adjusted Gaussian, spherical and exponential. The configuration of the sampling grid and the presence of intense layer of crop residues in the soil influenced the structure of spatial variability of FCO2, temperature, and OM. The FCO2 showed positive correlations with OM (r = 0.25, p <0.05) and AFPS (r = 0.27, p <0.01) and negatively with Ds (r = - 0.41, p <0.01). However, when the estimated spatially values are considered, the AFPS becomes the main variable responsible for the spatial characteristics of FCO2, showing correlation of 0.26 (p <0.01). The individual simulations led to all variables, better reproduction of the cumulative distribution functions (cdf), and variograms compared to OK and E-type estimate. The analysis results show strong similarities between the E-type estimates to those generated by the procedure of OK. The major uncertainties in predicting FCO2 were associated with areas with the highest... (Complete abstract click electronic access below)
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Andersson, Stefan. "Influence of liming substances and temperature on microbial activity and leaching of soil organic matter in coniferous forest ecosystems /". Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1999. http://epsilon.slu.se/avh/1999/91-576-5850-1.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hammer, Rachel Lynn. "Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High Elevation Southern Appalachian Forest". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/93272.

Texto completo
Resumen
Forests have the ability to sequester carbon from our atmosphere. Soil respiration (Rs) plays a role in a forest's ability to do so as it is a significant source of carbon dioxide back to the atmosphere. Therefore, understanding the process of Rs under varying conditions is gaining more attention. As of now we have a relatively good understanding of Rs under managed forest ecosystems such as pine plantations. This particular study examined Rs under different overstories and understories in a high elevation Southern Appalachian forest in order to get a better understanding of Rs under a natural hardwood system. The four vegetation types under consideration were an eastern hemlock (Tsuga canadensis L. Carriere) dominated overstory, a hardwood overstory with little to no understory, a mountain laurel (Kalmia latifolia L.) dominated understory, and a cinnamon fern (Osmundastrum cinnamomeum (L.) C.Presl) dominated understory. Differing temporal variations of Rs were observed under the vegetation types. We found monthly differences in rates among vegetation type however, an overall annual difference in Rs rates between vegetation types was not observed. This simply indicates the importance of observing Rs under different time scales to get a better understanding of its variation. We also calculated vegetation indices from remotely-sensed data to explore any relationships to Rs as well as if the indices themselves could improve out model. A vegetation index is a number that is calculated for every pixel in a remotely sensed image and represents plant vigor or abundance. Few significant relationships were found between the indices and Rs. Future work may want to better understand vegetation indices' spatial extent and accuracy in order to find whether they may be beneficial in Rs estimation. Understanding the influence of varying vegetation type and soil temperature and moisture on Rs will ultimately improve our ability to predict what drives changes in carbon fluxes.
Master of Science
Forests have the ability to sequester carbon from our atmosphere. Soil respiration (Rs) plays a role in a forest’s ability to do so as it is a significant source of carbon dioxide back to the atmosphere. Therefore, understanding the process of Rs under varying conditions is gaining more attention. As of now we have a relatively good understanding of Rs under managed forest ecosystems such as pine plantations. This particular study examined Rs under different overstories and understories in a high elevation Southern Appalachian forest in order to get a better understanding of Rs under a natural hardwood system. The four vegetation types under consideration were an eastern hemlock (Tsuga canadensis L. Carriere) dominated overstory, a hardwood overstory with little to no understory, a mountain laurel (Kalmia latifolia L.) dominated understory, and a cinnamon fern (Osmundastrum cinnamomeum (L.) C.Presl) dominated understory. Differing temporal variations of Rs were observed under the vegetation types. We found monthly differences in rates among vegetation type however, an overall annual difference in Rs rates between vegetation types was not observed. This simply indicates the importance of observing Rs under different time scales to get a better understanding of its variation. We also calculated vegetation indices from remotely-sensed data to explore any relationships to Rs as well as if the indices themselves could improve out model. A vegetation index is a number that is calculated for every pixel in a remotely sensed image and represents plant vigor or abundance. Few significant relationships were found between the indices and Rs. Future work may want to better understand vegetation indices’ spatial extent and accuracy in order to find whether they may be beneficial in Rs estimation. Understanding the influence of varying vegetation type and soil temperature and moisture on Rs will ultimately improve our ability to predict what drives changes in carbon fluxes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zamora-Ledezma, Ezequiel. "Evidences for an indirect effect of root functional traits and plant composition on soil microbial activities in Mediterranean rangelands : a spatial and temporal approach". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20176/document.

Texto completo
Resumen
Il est de plus en plus admis que pour comprendre le fonctionnement des écosystèmes, une approche aérienne associée à une approche souterraine est nécessaire en raison des rétroactions entre plantes et sol. La structure des communautés végétales peut affecter le fonctionnement du sol en altérant la quantité et la qualité des ressources intégrant le sol. Les contrôles abiotiques des processus microbiens du sol sont largement documentés, mais les potentiels effets de la composition de la communauté végétale et des traits racinaires sont peu connus. L'étude a été menée sur des prairies méditerranéennes du sud de la France. Nous avons sélectionné 12 communautés contrastées le long d'un gradient de disponibilité des ressources du sol principalement lié à la texture du sol. Les objectifs de cette thèse sont d'évaluer i) la réponse de la composition floristique et des traits foliaires et racinaires mesurés au niveau de la communauté le long gradient édaphique et à travers les saisons, et ii) leurs effets sur trois processus microbiens du sol impliqués dans les cycles du carbone (C) et de l'azote (N) : la respiration potentielle (SIR), la nitrification (NEA) et la dénitrification (DEA). Dans les sols sableux (parcelles peu productives), la communauté végétale possède une stratégie de conservation au niveau des feuilles et une stratégie d'acquisition des ressources au niveau des racines suggérant une forte plasticité des traits racinaires en réponse à la limitation des ressources ; les taux de SIR et NEA sont élevés. Un patron opposé est observé dans les sols argileux des milieux productifs. La DEA ne varie pas le long du gradient. Aucun effet de la richesse spécifique, de l'équitabilité ou de la biomasse végétale sur la SIR ou la NEA n'a été trouvé. Cependant, nous avons démontré qu'il y a une forte influence de la composition fonctionnelle des communautés végétales (abondance des graminoïdes), et surtout des traits racinaires. Nos résultats les plus novateurs montrent que la NEA et dans une moindre mesure la SIR sont positivement corrélés à la concentration en N des racines de la communauté et négativement corrélés à leur ratio C/N, tandis que les traits foliaires analogues ont seulement un effet mineur sur les activités microbiennes. Ces résultats suggèrent que la qualité chimique des racines est le principal pilote des activités du sol et que cela est maintenu à travers les saisons. D'importantes variations saisonnières de la composition floristique des communautés, de leurs traits racinaires et des activités microbiennes, excepté la DEA, ont été mises en avant. Les variations saisonnières des traits racinaires sont interprétées comme un changement relatif de la proportion de racines jeunes/vieilles et suggèrent une asynchronie entre la croissance aérienne et souterraine. Pour la première fois, nous montrons qu'en conditions naturelles, les changements saisonniers des traits fonctionnels racinaires peuvent être impliqués dans le pilotage de la NEA et de la SIR. Ce résultat démontre la nécessité d'études plus approfondies pour comprendre le rôle des traits racinaires comme pilote du fonctionnement du sol
It is increasingly recognized that the understanding of ecosystem functioning requires a combined above- and belowground approach, because of the importance of feedbacks between plants and soil. Plant community structure may affect soil functioning by altering the quantity and the quality of resources entering the soil. Abiotic controls on soil microbial processes are well documented, but potential effects of plant composition and root traits are poorly understood. The study was conducted in Mediterranean grasslands located in southern France. We selected 12 contrasting communities along a gradient of soil resource availability, which is mainly driven by soil texture. The aims of the thesis were to evaluate: i) the response of plant composition and leaf and root traits measured at the community level along the soil gradient and across seasons, ii) their effect on three soil microbial processes involved in carbon (C) and nitrogen (N) cycling, i.e. substrate-induced respiration (SIR), nitrifying (NEA) and denitrifying enzyme activities (DEA). In sandy soils (unproductive plots) plant communities had a conservation strategy at the leaf level and an acquisitive strategy at the root level suggesting a strong plasticity of root traits in response to resource limitation; rates of SIR and NEA were higher. Opposite pattern was observed in clay productive soils. DEA did not vary along the gradient. We did not find evidence of a species richness, evenness, or plant biomass effect on SIR and NEA. However, we demonstrated that they were strongly influenced by plant functional composition (abundance of graminoids), and particularly by root traits. Our most innovative finding evidences that NEA, and to a lesser extent SIR, were positively correlated with root nitrogen (N) concentration and negatively correlated with C/Ncom, whereas analogous leaf traits have only minor effect on microbial activities. Our results suggested that the chemical quality of roots is the main driver of soil activities and this was confirmed across the seasons. We highlight strong seasonal variations in plant community composition, root traits and soil microbial activity, except DEA. Seasonal variations in root traits were interpreted as a relative change in the proportion of young versus old roots and suggested an asynchrony between above– and belowground growth. We showed for the first time evidences that in natural conditions, seasonal changes in root functional traits could be implicated in driving NEA and SIR. This result demonstrates the need to further develop studies allowing a better understanding of the role of root traits as soil functioning drivers
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía