Índice

  1. Tesis

Literatura académica sobre el tema "Soil Moisture Temperature Coupling"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Soil Moisture Temperature Coupling".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Tesis sobre el tema "Soil Moisture Temperature Coupling"

1

Attalla, Daniela, and Wu Jennifer Tannfelt. "Automated Greenhouse : Temperature and soil moisture control." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184599.

Texto completo
Resumen
In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is used to water the plant. The watering system and the temperature control system was tested both separately and together. The result showed that the temperature could be maintained in the desired range. Results from the soil moisture sensor were uneven and therefore interpret as unreliable.<br>I denna tes byggdes ett automatiserat växthus med syftet att undersöka dess bevattningssystems pålitlighet samt om ett önskat temperaturspann kan bibehållas. Microkontrollern för att bygga detta automatiserade växthus var en Arduino UNO. Detta projekt använder sig av två olika sensorer, en jordfuktsensor och en temperatursensor. Sensorerna kontrollerar en värmefläkt och en pump. Värmefläkten används för att ändra temperaturen och pumpen för att vattna plantan. Bevattningssystemet och temperaturstyrningen har testats både separat och tillsammans. Resultatet visar att temperaturen kan bibehållas inom det önskade spannet. Resultaten från jordfuktsensorn var ojämna och därför tolkats som opålitliga.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

El-Bishti, Magda Bashier. "Determination of soil moisture using dielectric soil moisture sensors : effect of soil temperature and implication for evaporation estimates." Thesis, University of Reading, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487102.

Texto completo
Resumen
The reliability and accuracy of several sensors that employ the relationship between dielectric constant and soil moisture constant, e, in particular capacitance sensors were investigated. Results obtained from laboratory examinations ,of a Theta probe, TP, selected as a representative model for capacitance sensors, suggested that the sensor output was affected by temperature variations, electrical conductivity levels, spatial variation in sample bulk density as well as the level of compaction of the soil surrounding the sensor's rods. Detailed in situ e data collected usmg capacitance sensors were used to calculate sub-daily estimates of evaporation, E, using the soil water balance method, combined with the zero-flux-plane (ZFP) approach, for plots of bare soil, rapeseed and a maize field. These sensors comprised Theta probes (TP), Profiles probes (PP), ECH20 probes (EP) and Aquaflex sensors (AF). / The field output data of these sensors were analysed and compared with e obtained with both, the gravimetric and neutron probe method. The absolute values of B as measured by the various capacitance sensors differed considerably. Furthermore, the outputs of these sensors (apart from the AF probes) were found to be affected by temperature, which would result in an anomalous course of diurnal E. Also, B-data were subject to noise which required smoothing to ensure a physically realistic variation in E, when compared to estimates with the Penman-Monteith equation, EPAf, and the eddy-covariance method (maize field). E was determined from diurnal changes in vertically integrated soil moisture content above the ZFP. Smoothed values of Bwere temperature-corrected using fieldbased and laboratory-based correction equations. A considerable difference between field- and laboratory-based temperature corrections procedures was noticed, and correction factors strongly depended on B. As this resulted in an overly complicated correction procedure, which consequently gave unreliable E-values, it was then decided to use a constant correction factor (based on the field correction procedure), for each capacitance probe. For the bare soil plot, with the exception ofPP and EP only Bprofiles obtained with the TP and AF sensors produced relatively reliable E values when compared to Enf. By contrast, when these capacitance sensors were used under a canopy, all sensors yielded satisfactory E-values. This was most likely caused by reduced amplitudes of soil temperatures under the canopy and the fact that the dimensions of most sensors do not allow installation in the top soil (~3-5cm) layer at which most evaporation would take place in bare soils. We therefore recommended that these sensors can be used for diurnal B measurements and E determination under canopy provided that an appropriate temperature-correction procedure for each sensor is applied. To obtain reliable Band E estimates in bare soil, more research needs to be done. For more reliable e and E estimations in bare soils further extensive field trials would be strongly advised
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Franks, Carol Dawn. "Temperature, moisture and albedo properties of Arizona soils." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_263_sip1_w.pdf&type=application/pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Alvenäs, Gunnel. "Evaporation, soil moisture and soil temperature of bare and cropped soils /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1999. http://epsilon.slu.se/avh/1999/91-576-5714-9.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Low, Spencer Nishimoto. "An Exploration of Soil Moisture Reconstruction Techniques." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9169.

Texto completo
Resumen
Satellite radiometers are used to remotely measure properties of the Earth's surface. Radiometers enable wide spatial coverage and daily temporal coverage. Radiometer measurements are used in a wide array of applications, including freeze/thaw states inference, vegetation index calculations, rainfall estimation, and soil moisture estimation. Resolution enhancement of these radiometer measurements enable finer details to be resolved and improve our understanding of Earth. The Soil Moisture Active Passive (SMAP) radiometer was launched in April 2014 with a goal to produce high resolution soil moisture estimates. However, due to hardware failure of the radar channels, prepared algorithms could no longer be used. Current algorithms utilize a narrow spatial and temporal overlap between the SMAP radiometer and the SENTINEL-1 radar to produce high resolution soil moisture estimates that are spatially and temporally limited. This thesis explores the use of resolution enhancing algorithms to produce high resolution soil moisture estimates without the spatial coverage limitations caused by using multiple sensors. Two main approaches are considered: calculating the iterative update in brightness temperature and calculating the update in soil moisture. The best performing algorithm is the Soil Moisture Image Reconstruction (SMIR) algorithm that is a variation of the Radiometer form of the Scatterometer Image Reconstruction (rSIR) algorithm that has been adapted to operate in parameter space. This algorithm utilizes a novel soil moisture measurement response function (SMRF) in the reconstruction. It matches or exceeds the performance of other algorithms and allows for wide spatial coverage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Post, Donald F., Jamie P. Dubay, and Allan D. Matthias. "The Effects of Rock and Green Waste Mulches on Soil Moisture and Soil Temperature." Arizona-Nevada Academy of Science, 2000. http://hdl.handle.net/10150/296563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Adu-Gyamfi, Kwame. "Laboratory calibration of soil moisture, resistivity, and temperature probe - Capacitance probe." Ohio : Ohio University, 2001. http://www.ohiolink.edu/etd/view.cgi?ohiou1173385776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Brewer, Robert Wayne. "Summer Regional United States Diurnal Temperature Range Variability With Soil Moisture Conditions." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428939308.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dilawari, Geetika. "Analysis of the influence of soil temperature and soil surface conditions on soil moisture estimation using the Theta Probe." [Ames, Iowa : Iowa State University], 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Matheron, Michael, Martin Porchas, and Michael Maurer. "Effect of Temperature and Moisture on Survival of Phytophthora in Citrus Grove Soil." College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/223839.

Texto completo
Resumen
Before replanting a citrus grove in Arizona, different preplant cultural activities may be performed, such as immediate replanting of the new citrus grove, allowing soil to lay fallow for various lengths of time, or planting the site to alfalfa for one or more years before the new citrus grove is established. A study was conducted to compare the effect of these different cultural preplant practices on the survival of Phytophthora in citrus grove soils. In June, 1998, and July, 1999, a total of 18 soil samples were collected within mature lemon groves. Each initial bulk sample was pretested, found to contain Phytophthora parasitica, then thoroughly mixed and partitioned into 1-liter plastic containers, which were subjected to different environmental and cultural conditions. The soil in each 1-liter container was tested for the presence of P. parasitica 1 and 3.5 to 4 months later. All soil samples then were placed in the greenhouse and a 6-month-old Citrus volkameriana seedling was planted in soil samples not containing plants. Three 1-liter sub-samples from each of ten 7-liter volumes of soil incubated outside for three months were also planted to citrus in the greenhouse. The soil containing plants in the greenhouse was watered as needed for 3 months, then again tested for the presence of Phytophthora. Irrigating soil infested with Phytophthora parasitica, whether it was planted to a host (citrus) of the pathogen, planted to a non-host (alfalfa) of the pathogen, or not planted at all, did not lower the pathogen to nondetectable levels. Phytophthora became and remained nondetectable only in the soil samples that were not irrigated and subjected to mean temperatures of 35 to 37° C (94 to 98° F). On the other hand, the pathogen was detectable in some soil samples subjected to dryness at lower mean temperatures of 26 to 30° C (79 to 86° F) after a citrus seedling subsequently was grown in the soil for 3 months. A dry summer fallow period following removal of a citrus grove (including as much root material as possible) was the only cultural practice among those tested that reduced the level of Phytophthora to nondetectable levels in all soil samples tested.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía