Literatura académica sobre el tema "Soil moisture Measurement"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Soil moisture Measurement".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Soil moisture Measurement"
Bretreger, David, Greg Hancock, In-Young Yeo, Dr Cristina Martinez, Dr Tony Wells, Tristan Cox, Veikko Kunkel y Abraham Gibson. "Comparing the reliability of two soil moisture probes for high clay content NSW soils". Water e-Journal 8, n.º 3 (2022): 1–17. http://dx.doi.org/10.21139/wej.2022.035.
Texto completoGroenevelt, P. H. "Hydrostatics of frozen soil". Canadian Journal of Soil Science 90, n.º 3 (1 de agosto de 2010): 403–8. http://dx.doi.org/10.4141/cjss09032.
Texto completoSui, Ruixiu, Horace C. Pringle y Edward M. Barnes. "Soil Moisture Sensor Test with Mississippi Delta Soils". Transactions of the ASABE 62, n.º 2 (2019): 363–70. http://dx.doi.org/10.13031/trans.12886.
Texto completoNolan, M., D. R. Fatland y L. Hinzman. "Dinsar measurement of soil moisture". IEEE Transactions on Geoscience and Remote Sensing 41, n.º 12 (diciembre de 2003): 2802–13. http://dx.doi.org/10.1109/tgrs.2003.817211.
Texto completoChanasyk, D. S. y M. A. Naeth. "Field measurement of soil moisture using neutron probes". Canadian Journal of Soil Science 76, n.º 3 (1 de agosto de 1996): 317–23. http://dx.doi.org/10.4141/cjss96-038.
Texto completoCampora, Marina, Anna Palla, Ilaria Gnecco, Rossella Bovolenta y Roberto Passalacqua. "The laboratory calibration of a soil moisture capacitance probe in sandy soils". Soil and Water Research 15, No. 2 (11 de marzo de 2020): 75–84. http://dx.doi.org/10.17221/227/2018-swr.
Texto completoRasche, Daniel, Markus Köhli, Martin Schrön, Theresa Blume y Andreas Güntner. "Towards disentangling heterogeneous soil moisture patterns in cosmic-ray neutron sensor footprints". Hydrology and Earth System Sciences 25, n.º 12 (22 de diciembre de 2021): 6547–66. http://dx.doi.org/10.5194/hess-25-6547-2021.
Texto completoM. T. Morgan, R. K. Wood y R. G. Holmes. "Dielectric Moisture Measurement of Soil Cores". Transactions of the ASAE 36, n.º 1 (1993): 17–22. http://dx.doi.org/10.13031/2013.28308.
Texto completoSong, Wenlong, Yizhu Lu, Yu Wang, Jingxuan Lu y Haixian Shi. "A Pixel-Scale Measurement Method of Soil Moisture Using Ground-Penetrating Radar". Water 15, n.º 7 (28 de marzo de 2023): 1318. http://dx.doi.org/10.3390/w15071318.
Texto completoLevy, Joseph S. y Jessica T. E. Johnson. "Remote Soil Moisture Measurement from Drone-Borne Reflectance Spectroscopy: Applications to Hydroperiod Measurement in Desert Playas". Remote Sensing 13, n.º 5 (9 de marzo de 2021): 1035. http://dx.doi.org/10.3390/rs13051035.
Texto completoTesis sobre el tema "Soil moisture Measurement"
Ridley, Andrew Martin. "The measurement of soil moisture suction". Thesis, Imperial College London, 1993. http://hdl.handle.net/10044/1/7933.
Texto completoOmotere, Olumide Olubunmi. "Improvement of the Soil Moisture Diagnostic Equation for Estimating Root-Zone Soil Moisture". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157607/.
Texto completoHowell, C. L. (Carolyn Louise). "Comparison of different methods by means of which water holding capacity of soil is determined and the prediction of water holding capacity from soil texture in coarse-textured soil". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49890.
Texto completoENGLISH ABSTRACT: Irrigation scheduling is one of the most important cultural practices in irrigated vineyards. Water holding capacity of soil is arguably therefore one of the most important characteristics of a soil as it determines how much water can be made available to the plant. The measurement of water holding capacity of soils is time consuming and costly. In situ determinations are often impractical to determine. For routine determinations, water holding capacity is therefore determined on disturbed samples. Such a method for example is the rubber ring method. A great deal of criticism surrounds this rubber ring method and results are often questioned. The objectives of this study were therefore to determine what the relationship was between undisturbed and disturbed samples and to determine whether compacted samples could give a more accurate representation of the water holding capacity of soil. Soil textural factors influencing the volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa were investigated. In addition, soil textural properties influencing water holding capacity of the respective samples between 5 and 100 kPa and 10 and 100 kPa were investigated. The final objective of the study was to develop simple models to predict the volumetric water content and water holding capacity of soil. Undisturbed and disturbed soil samples were taken at various localities to ensure a wide range of textures. Water holding capacity of undisturbed and disturbed samples was determined at ARC Infruitec-Nietvoorbij using the standard air pressure and ceramic plate technique and the routine rubber ring method respectively. Soil samples were also compacted to a bulk density of approximately 1.5 g.cm-3 as a further treatment for determination of water holding capacity using the air pressure and ceramic plate technique. To investigate aspects of soil texture that could possibly influence volumetric water content of the soil, correlations were done between different texture components and volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa. In order to determine the effect of texture on water holding capacity of the soil, correlations were drawn between texture components and water holding capacity of undisturbed, rubber ring and compacted samples between matric potential ranges 5 and 100 kPa and 10 and 100 kPa. The results from this study were used to develop models to predict volumetric soil water content and water holding capacity of soils for a range of soils. Volumetric water content of rubber ring samples at 5 kPa was more than the volumetric water content of undisturbed samples at 5 kPa. The volumetric water content of rubber ring samples at 5 kPa and the volumetric water content of undisturbed samples at 5 kPa was correlated by 87%. Volumetric water content of compacted samples at 5 kPa had a 85% degree of correlation with the volumetric water content of undisturbed samples. At 10 kPa, the correlation between volumetric water content determined using rubber ring samples and undisturbed samples was 77%. This was identical to the correlation between volumetric water content of compacted samples at 10 kPa and undisturbed samples. At 100 kPa, most of the rubber ring samples' volumetric water content fell below the 1:1 line of volumetric water content of undisturbed samples. The volumetric water content of all the compacted samples was higher than that of the undisturbed samples. Water holding capacity of all the rubber ring samples between 5 and 100 kPa was greater than the water holding capacity of the undisturbed samples between 5 and 100 kPa. Rubber ring samples therefore generally overestimated the water holding capacity of the soil. The water holding capacity of most of the rubber ring samples between 10 and 100 kPa was greater than the water holding capacity of the undisturbed samples. In contrast, the water holding capacity of compacted samples between 5 and 100 kPa was less than the water holding capacity of undisturbed samples between 5 and 100 kPa. Water holding capacity of compacted samples was therefore underestimated. The results from this study confirmed that the influence of clay and silt content on volumetric water content of undisturbed, rubber ring and compacted samples increased as the suction on the respective samples is increased. The influence of fine sand content on volumetric water content of undisturbed, rubber ring and compacted samples decreased with an increase in matric potential to 100 kPa. Medium sand content of undisturbed, rubber ring and compacted samples had the greatest influence of all the textural components on the volumetric water content of the respective samples at 5 kPa and 10 kPa. Water holding capacity of undisturbed, rubber ring and compacted samples between 5 and 100 kPa was greatly influenced by the fine sand content of the samples. Medium sand content of the samples also had an influence on the water holding capacity thereof. To predict the volumetric water content of undisturbed samples at 5, 10 and 100 kPa, the independent variables were fine sand content, square root of medium sand content and In of medium sand content. In the case of models to predict the volumetric water content of rubber ring samples at 5, 10 and 100 kPa, the same variables were used as independent variables. Additional variables such as silt content, the In of silt content, square root of clay plus silt content and the medium sand content. To predict the volumetric water content of compacted samples at 5, 10 and 100 kPa the terms used were silt content, clay plus silt content, the e-clay plus silt content. medium sand content and the square root of medium sand content. The models to predict volumetric water content of rubber ring samples gave the best correlation with the actual volumetric water content of rubber ring samples. The final models to predict the water holding capacity of all the samples between 5 and 100 kPa and 10 and 100 kPa used only fine and medium sand parameters as independent variables. Soil textural components do play an important role in determining the volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa. The magnitude of the water holding capacity between 5 and 100 kPa and 10 and 100 kPa is also influenced by soil texture. The models developed to predict the volumetric water content of samples at 5, 10 and 100 kPa and the magnitude of the water holding capacity between 5 and 100 kPa and 10 and 100 kPa could be very useful. Both time and money can potentially be saved. Models that can be highly recommended are the models generated for the undisturbed samples. These are: At 5 kPa, VWCu = 0.47259 - 0.04712 medium sando.s At 10 kPa, VWCu = 0.41292 - 0.04221 medium sandos At 100 kPa, VWCu = 0.48080 - 0.00254 fine sand - 0.0865 In medium sand Between 5 and 100 kPa, WHCu = -29.523 + 3.394 fine sand Between 10 and 100 kPa, WHCu = -891.794 + 232.326 In fine sand + 38.006 In medium sand
AFRIKAANSE OPSOMMING: Besproeiingskedulering is een van die belangrikste wingerdverbouingspraktyke. Waterhouvermoë bepaal hoeveel water beskikbaar gestel kan word aan die plant en daarom is dit een van die belangrikste eienskappe van 'n grond. Die meting van waterhouvermoë van grond is tydsaam en duur. Boonop is in situ bepalings dikwels onprakties om te bepaal. Waterhouvermoë word dus bepaal op versteurde monsters vir roetine ontledings. 'n Voorbeeld van so 'n metode is die rubberring metode. Daar bestaan groot kritiek teenoor hierdie rubberring metode en resultate word dikwels betwyfel deur die landboubedryf. Die doel van hierdie studie was dus om te bepaal wat die verwantskap is tussen onversteurde monsters en rubberring monsters asook om te bepaal of gekompakteerde monsters 'n meer akkurate aanduiding sou gee as onversteurde monsters van die waterhouvermoë van die grond. Grondtekstuur faktore wat die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 and 100 kPa beïnvloed, was ondersoek. Grondtekstuur faktore wat waterhouvermoë van die onderskeie monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa beïnvloed, was ook ondersoek. Die finale doelwit van die studie was om eenvoudige modelle te ontwikkel vir die voorspelling van volumetriese waterinhoud en waterhouvermoë van grond. Onversteurde grond monsters en grond vir versteurde monsters is by verskeie lokaliteite geneem om 'n wye reeks teksture te verkry. Waterhouvermoë van onversteurde monsters is bepaal by LNR Infruitec- Nietvoorbij met die standaard drukplaat tegniek. Waterhouvermoë van versteurde grond is bepaal met die roetine rubberring metode van LNR Infruitec-Nietvoorbij. Grond was ook gekompakteer tot 'n bulkdigtheid van ongeveer 1.5 g.cm-3 en daarna is die waterhouvermoë bepaal by die LNR Infruitec- Nietvoorbij met die standaard drukplaat tegniek. Om aspekte van grondtekstuur, wat moontlik die volumetriese waterinhoud van grond kan beïnvloed te ondersoek, is korrelasies tussen verskeie tekstuur komponente en die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 en 100 kPa bepaal. Om te bepaal watter tekstuur komponente waterhouvermoë van die grond kan bepaal, is korrelasies getrek tussen tekstuur komponente en waterhouvermoë van onversteurde monsters, rubberring monsters en gekompakteerde monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa. Die data is verwerk met die SAS uitgawe 6.12 (SAS, 1990) om modelle vir die voorspelling van volumetriese waterinhoud en waterhouvermoë van grond met behulp van maklik kwantifiseerbare grondtekstuur veranderlikes te ontwikkel. Die volumetriese waterinhoud van rubberring monsters by 5 kPa was meer as die volumetriese waterinhoud van onversteurde monsters by 5 kPa. Die volumetriese waterinhoud van rubberring monsters by 5 kPa en die volumetriese waterinhoud van onversteurde monsters by 5 kPa is gekorreleerd met 87%. Die volumetriese waterinhoud van gekompakteerde monsters by 5 kPa het 'n korrelasie van 85% met volumetriese waterinhoud van onversteurde monsters getoon. By 10 kPa, was die graad van korrelasie tussen volumetriese waterinhoud bepaal met rubberring monsters en onversteurde monsters, 77%. Dit was omtrent dieselfde as die graad van korrelasie tussen volumetriese waterinhoud van gekompakteerde monsters en onversteurde monsters by 10 kPa. By 100 kPa het die meeste van die rubberring monsters se volumetriese waterinhoud onderkant die 1:1 lyn van die volumetriese waterinhoud by 100 kPa van al die onversteurde monsters. Die volumetriese waterinhoud van al die gekompakteerde monsters was hoër as die van die onversteurde monsters. Die waterhouvermoë van al die rubberring monsters tussen 5 en 100 kPa was groter as die van die onversteurde monsters tussen 5 en 100 kPa. Die rubberring monsters het dus oor die algemeen die grootte van die waterhouvermoë oorskry. Die waterhouvermoë van die meeste van die rubberring monsters tussen 10 en 100 kPa was groter as die waterhouvermoë van die onversteurde monsters. Die waterhouvermoë van gekompakteerde monsters tussen 5 en 100 kPa was minder as die waterhouvermoë van die onversteurde monsters tussen 5 en 100 kPa. Die waterhouvermoë van gekompakteerde grondmonsters is dus onderskat. Die resultate van hierdie studie het die invloed van klei- en slik- inhoud op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters bevestig. Die invloed van klei en sand op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters het toegeneem soos die matriks potensiaal op die onderskeie monsters toegeneem het. Die invloed van fynsand op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters was die grootste by 5 kPa en het afgeneem tot by 100 kPa. Die mediumsand inhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters het van al die tekstuur komponente die grootste invloed op die volumetriese waterinhoud van al die monsters by 5 kPa en 10 kPa gehad. Die waterhouvermoë van onversteurde monsters, rubberring monsters en gekompakteerde monsters tussen 5 en 100 kPa is grootliks beinvloed deur die fynsand inhoud van die monsters. Die mediumsand inhoud van die monsters het ook 'n invloed gehad op die waterhouvermoë daarvan. Om die volumetriese waterinhoud van onversteurde monsters by 5, 10 en 100 kPa te voorspel, is onafhanklike veranderlikes soos fynsand inhoud, vierkantswortel van mediumsand inhoud en In van mediumsand inhoud bepaal. In die geval van modelle om die volumetriese waterinhoud van rubberring monsters by 5, 10 en 100 kPa te voorspel, is dieselfde veranderlikes gebruik as onafhanklike veranderlikes. Addisionele veranderlikes soos slik inhoud, In van slik inhoud, die vierkantswortel van die klei plus slik inhoud en die mediumsand inhoud is ook gebruik. Om die volumetriese waterinhoud van gekompakteerde monsters by 5, 10 en 100 kPa te voorspel, is die terme slik inhoud, klei plus slik inhoud, e-klei plus slik inhoud, mediumsand inhoud en vierkantswortel van mediumsand inhoud gebruik. Die modelle om volumetriese waterinhoud van rubberring samples te voorspel het die akkuraatste voorspellings gegee. Die finale modelle, om waterhouvermoë van alle monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa te bepaal, het slegs fyn en mediumsand as onafhanklike veranderlikes gebruik. Grondtekstuur komponente speel dus 'n belangrike rol in die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 en 100 kPa. Die grootte van die waterhouvermoë tussen 5 en 100 kPa en tussen 10 en 100 kPa is ook beinvloed deur die grondtekstuur. Die modelle wat ontwikkel is om die volumetriese waterinhoud van monsters by 5, 10 en 100 kPa en die grootte van die waterhouvermoë tussen 5 en 100 kPa en tussen 10 and 100 kPa te voorspel, kan baie waardevol wees. Tyd en geld kan potensieel bespaar word. Die modelle wat hoogs aanbevole is, is die modelle vir onversteurde monsters. Die modele is: By 5 kPa, VWlo = 0.47259 - 0.04712 rnedlumsand?" By 10 kPa, VWlo = 0.41292 - 0.04221 mediumsando.s By 100 kPa, VWlo = 0.48080 - 0.00254 fynsand - 0.0865 In mediumsand Tussen 5 en 100 kPa, WHVo = -29.523 + 3.394 fynsand Tussen 10 en 100 kPa, WHVo = -891.794 + 232.326 In fynsand + 38.006 In mediumsand
Rahgozar, Mandana Seyed. "Estimation of evapotranspiration using continuous soil moisture measurement". [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001812.
Texto completoHussen, Akif Ali. "Measurement of Unsaturated Hydraulic Conductivity in the Field". FIND on the Web, 1991.
Buscar texto completoStreicher, John James. "A new method to compare radiation view factors and a study of bare soil evaporation using microlysimeters". Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26645.
Texto completoLand and Food Systems, Faculty of
Graduate
Hussen, Akif Ali 1957. "Measurement of Unsaturated Hydraulic Conductivity in the Field". Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/191170.
Texto completoHouser, Paul Raymond 1970. "Remote-Sensing Soil Moisture Using Four-Dimensional Data Assimilation". Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/191208.
Texto completoAhmed, Zubair. "Design of Autonomous Low Power Sensor for Soil Moisture Measurement". Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-90634.
Texto completoGuan, Zhi Wei 1953. "Soil moisture approximation using thermal inertia maps : verification study on the relationship between HCMM observations and antecedent precipitation index for St. Lawrence Lowland of Southern Quebec". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55601.
Texto completoLibros sobre el tema "Soil moisture Measurement"
Heidmann, L. J. Comparison of moisture retention curves for representative basaltic and sedimentary soils in Arizona prepared by two methods. [Fort Collins, Colo.]: USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, 1990.
Buscar texto completoSmreciu, Elizabeth Ann. Soil moisture levels - 1995: Oldman River Dam. Edmonton, Alta: Wild Rose Consulting, Inc., 1995.
Buscar texto completoSoil water measurement: A practical handbook. Hoboken, NJ: John Wiley & Sons, 2016.
Buscar texto completoHudson, Norman. Field measurement of soil erosion and runoff. Rome: Food and Agriculture Organization of the United Nations, 1993.
Buscar texto completoHudson, Norman. Field measurement of soil erosion and runoff. Rome: Food and Agriculture Organization of the United Nations, 1993.
Buscar texto completoKlemunes, John A. Determining soil volumetric moisture content using time domain reflectometry. McLean, VA: U.S. Dept. of Transportation, Federal Highway Administration, Research and Development, Turner-Fairbank Highway Research Center, 1998.
Buscar texto completoKlemunes, John A. Determining soil volumetric moisture content using time domain reflectometry. McLean, VA: U.S. Dept. of Transportation, Federal Highway Administration, Research and Development, Turner-Fairbank Highway Research Center, 1998.
Buscar texto completoWegehenkel, Martin. Beitrag zur flächenhaften Modellierung von Verdunstung und Bodenfeuchte. Freiburg i.Br: Im Selbstverlag des Institutes für Physische Geographie der Albert-Ludwigs-Universität Freiburg i.Br., 1992.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results. [Washington, DC: National Aeronautics and Space Administration, 1992.
Buscar texto completoWolfgang, Wagner. Soil moisture retrieval from ERS scatterometer data. Wien: Veröffentlichung des Instituts für Photogrammetrie und Fernerkundung, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Soil moisture Measurement"
Yu, Kegen. "Soil Moisture Measurement". En Navigation: Science and Technology, 267–304. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0411-9_9.
Texto completoAhmad, Latief, Raihana Habib Kanth, Sabah Parvaze y Syed Sheraz Mahdi. "Measurement of Soil Moisture". En Experimental Agrometeorology: A Practical Manual, 131–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69185-5_19.
Texto completoJonard, François, Heye Bogena, David Caterina, Sarah Garré, Anja Klotzsche, Alessandra Monerris, Mike Schwank y Christian von Hebel. "Ground-Based Soil Moisture Determination". En Observation and Measurement, 1–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-47871-4_2-1.
Texto completoJonard, François, Heye Bogena, David Caterina, Sarah Garré, Anja Klotzsche, Alessandra Monerris, Mike Schwank y Christian von Hebel. "Ground-Based Soil Moisture Determination". En Observation and Measurement of Ecohydrological Processes, 29–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48297-1_2.
Texto completoKoch, Axelle, Félicien Meunier, Harry Vereecken y Mathieu Javaux. "Root Processes Affecting the Soil Moisture Patterns in Ecohydrology". En Observation and Measurement, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-47871-4_13-1.
Texto completoHodnett, M. G. "The Neutron Probe for Soil Moisture Measurement". En Advanced Agricultural Instrumentation, 148–92. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4404-6_7.
Texto completoGomez, Eduardo, Jorge Eliecer Duque, Alvaro José Rojas, Cristian Camilo Jaik y Jose Angel Pertuz. "Agro-Smart Caribe: Soil Moisture Measurement System". En Communications in Computer and Information Science, 422–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86702-7_36.
Texto completoSaptomo, Satyanto Krido, Budi Indra Setiawan, Yudi Chadirin, Kazutoshi Osawa, Toshihide Nagano, Kosuke Mizuno, Dian Novarina, Susilo Sudarman y Aulia Aruan. "Patterns of CO2 Emission from a Drained Peatland in Kampar Peninsula, Riau Province, Indonesia". En Global Environmental Studies, 89–101. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0906-3_5.
Texto completoKoch, Axelle, Félicien Meunier, Harry Vereecken y Mathieu Javaux. "Root Processes Affecting Soil Moisture Patterns in Ecohydrology". En Observation and Measurement of Ecohydrological Processes, 417–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48297-1_13.
Texto completoO’Connor, Kevin M. y Charles H. Dowding. "Field Experience and Verification of Soil Moisture Measurement". En GeoMeasurements by Pulsing TDR Cables and Probes, 81–105. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003067726-4.
Texto completoActas de conferencias sobre el tema "Soil moisture Measurement"
Hatanaka, Daisuke, Alireza Ahrary y Dennis Ludena. "Research on Soil Moisture Measurement Using Moisture Sensor". En 2015 IIAI 4th International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE, 2015. http://dx.doi.org/10.1109/iiai-aai.2015.289.
Texto completoNikolov, Georgi Todorov, Elitsa Emilova Gieva, Boyanka Marinova Nikolova y Ivelina Nikolaeva Ruskova. "Soil Moisture Measurement with Flexible Sensors". En 2020 XXIX International Scientific Conference Electronics (ET). IEEE, 2020. http://dx.doi.org/10.1109/et50336.2020.9238304.
Texto completoHassan, Muhsiul y Nemai C. Karmakar. "Soil moisture measurement using smart antennas". En 2014 8th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2014. http://dx.doi.org/10.1109/icece.2014.7027009.
Texto completoChen, Xuemin, Jing Li, Renyue Liang, Yijie Sun, C. Richard Liu, Richard Rogers y German Claros. "Microstrip transmission line for soil moisture measurement". En Optics East, editado por Anbo Wang. SPIE, 2004. http://dx.doi.org/10.1117/12.571448.
Texto completoBirdal, Gazanfer, Alp Akin y İhan Sarikaya. "Soil Moisture Measurement Tools Production and Development". En SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733505.
Texto completoPriyaa, A. S. Pathma, Adil Mohammed, C. Ambili, N. S. Anusree, Anne Varghese Thekekara, R. Rajesh Mohan y S. Mridula. "Microwave Sensor Antenna for Soil Moisture Measurement". En 2015 Fifth International Conference on Advances in Computing & Communications (ICACC). IEEE, 2015. http://dx.doi.org/10.1109/icacc.2015.92.
Texto completoCalla, O. P. N., Dinesh Bohra, Rajesh Vyas, Bhawani Shankar Purohit, Rakesh Prasher, Abhishek Loomba y Naveen Kumar. "Measurement of soil moisture using microwave radiometer". En 2008 International Conference on Recent Advances in Microwave Theory and Applications (MICROWAVE). IEEE, 2008. http://dx.doi.org/10.1109/amta.2008.4763147.
Texto completoPacheco Gil, Henry Antonio, Juan Ramón Primera, Lizardo Mauricio Reina Bowen y Crishtian Emil Vega Ponce. "Measurement of soil moisture with spatial sensors". En VIII Congreso Internacional de Investigación REDU. Medwave, 2022. http://dx.doi.org/10.5867/medwave.2022.s1.ci64.
Texto completoSingh, Kamlesh Kumar, Neeraj K. Chasta y Maryam Shojaei Baghini. "Experimental Electrical Modeling of Soil for In Situ Soil Moisture Measurement". En 2013 International Symposium on Electronic System Design (ISED). IEEE, 2013. http://dx.doi.org/10.1109/ised.2013.31.
Texto completolingli, Zhao. "Soil Moisture Measurement Based on Monte Carlo Method". En 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019. http://dx.doi.org/10.1109/ccdc.2019.8832820.
Texto completoInformes sobre el tema "Soil moisture Measurement"
Pradhan, Nawa Raj. Estimating growing-season root zone soil moisture from vegetation index-based evapotranspiration fraction and soil properties in the Northwest Mountain region, USA. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/42128.
Texto completoEylander, John, Michael Lewis, Maria Stevens, John Green y Joshua Fairley. An investigation of the feasibility of assimilating COSMOS soil moisture into GeoWATCH. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41966.
Texto completoBrisco, B., R. J. Brown y G. C. Topp. Multi-frequency Portable Dielectric Probes for In-situ Soil Moisture Measurement. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/217759.
Texto completoOlsen, Khris B., Gregory W. Patton, P. Evan Dresel y John C. Evans, Jr. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area. Office of Scientific and Technical Information (OSTI), julio de 2000. http://dx.doi.org/10.2172/781852.
Texto completoOlsen, Khris B., Gregory W. Patton, R. Poreda, P. Evan Dresel y John C. Evans. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area. Office of Scientific and Technical Information (OSTI), julio de 2000. http://dx.doi.org/10.2172/965209.
Texto completoKB Olsen, GW Patton, R Poreda, PE Dresel y JC Evans. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area. Office of Scientific and Technical Information (OSTI), julio de 2000. http://dx.doi.org/10.2172/757601.
Texto completoDasberg, Shmuel, Jan W. Hopmans, Larry J. Schwankl y Dani Or. Drip Irrigation Management by TDR Monitoring of Soil Water and Solute Distribution. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568095.bard.
Texto completoBeauregard, Yannick. PR261-193604-R01 Optimizing Stress Corrosion Cracking Management - Field and Economic Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 2021. http://dx.doi.org/10.55274/r0012179.
Texto completoKing y Jack. L51906 The Role of Redox and Corrosion Potentials in the Corrosion of Line Pipe Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), septiembre de 2001. http://dx.doi.org/10.55274/r0010374.
Texto completoShmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf y Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, octubre de 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Texto completo