Literatura académica sobre el tema "Soil metagenomic"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Soil metagenomic".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Soil metagenomic"
Navarrete, Acacio Aparecido, Eliamar Aparecida Nascimbém Pedrinho, Luciano Takeshi Kishi, Camila Cesário Fernandes, Victoria Romancini Toledo, Rita de Cassia Félix Alvarez, Elisângela de Souza Loureiro, Leandro Nascimento Lemos, Siu Mui Tsai y Eliana Gertrudes de Macedo Lemos. "Taxonomic and nitrogen-cycling microbial community functional profiles of sugarcane and adjacent forest soils in Southeast Brazil". MOJ Ecology & Environmental Sciences 6, n.º 4 (5 de julio de 2021): 119–25. http://dx.doi.org/10.15406/mojes.2021.06.00224.
Texto completoMeier, Matthew J., E. Suzanne Paterson y Iain B. Lambert. "Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil". Applied and Environmental Microbiology 82, n.º 3 (20 de noviembre de 2015): 897–909. http://dx.doi.org/10.1128/aem.03306-15.
Texto completoWerbin, Zoey R., Briana Hackos, Jorge Lopez-Nava, Michael C. Dietze y Jennifer M. Bhatnagar. "The National Ecological Observatory Network’s soil metagenomes: assembly and basic analysis". F1000Research 10 (23 de marzo de 2022): 299. http://dx.doi.org/10.12688/f1000research.51494.2.
Texto completoPuranik, Sampada, Rajesh Ramavadh Pal, Ravi Prabhakar More y Hemant J. Purohit. "Metagenomic approach to characterize soil microbial diversity of Phumdi at Loktak Lake". Water Science and Technology 74, n.º 9 (9 de agosto de 2016): 2075–86. http://dx.doi.org/10.2166/wst.2016.370.
Texto completoSimon, Carola y Rolf Daniel. "Metagenomic Analyses: Past and Future Trends". Applied and Environmental Microbiology 77, n.º 4 (17 de diciembre de 2010): 1153–61. http://dx.doi.org/10.1128/aem.02345-10.
Texto completoHuy, Pham Quang, Nguyen Kim Thoa y Dang Thi Cam Ha. "Diversity of reductive dechlorinating bacteria and archaea in herbicide/dioxin-contaminated soils from Bien Hoa airbase using metagenomic approach". Vietnam Journal of Biotechnology 18, n.º 4 (24 de mayo de 2021): 773–84. http://dx.doi.org/10.15625/1811-4989/18/4/15799.
Texto completoCastillo Villamizar, Genis Andrés, Heiko Nacke, Marc Boehning, Kristin Herz y Rolf Daniel. "Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases". mBio 10, n.º 1 (29 de enero de 2019): e01966-18. http://dx.doi.org/10.1128/mbio.01966-18.
Texto completoWerbin, Zoey R., Briana Hackos, Michael C. Dietze y Jennifer M. Bhatnagar. "The National Ecological Observatory Network’s soil metagenomes: assembly and basic analysis". F1000Research 10 (19 de abril de 2021): 299. http://dx.doi.org/10.12688/f1000research.51494.1.
Texto completoDelmont, Tom O., Patrick Robe, Sébastien Cecillon, Ian M. Clark, Florentin Constancias, Pascal Simonet, Penny R. Hirsch y Timothy M. Vogel. "Accessing the Soil Metagenome for Studies of Microbial Diversity". Applied and Environmental Microbiology 77, n.º 4 (23 de diciembre de 2010): 1315–24. http://dx.doi.org/10.1128/aem.01526-10.
Texto completoOwen, Jeremy G., Zachary Charlop-Powers, Alexandra G. Smith, Melinda A. Ternei, Paula Y. Calle, Boojala Vijay B. Reddy, Daniel Montiel y Sean F. Brady. "Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors". Proceedings of the National Academy of Sciences 112, n.º 14 (23 de marzo de 2015): 4221–26. http://dx.doi.org/10.1073/pnas.1501124112.
Texto completoTesis sobre el tema "Soil metagenomic"
Goode, Ann Marie Liles Mark Russell. "Polyketide synthase pathway discovery from soil metagenomic libraries". Auburn, Ala., 2009. http://hdl.handle.net/10415/1805.
Texto completoShezi, Ntombifuthi. "Bio-prospecting a Soil Metagenomic Library for Carbohydrate Active Esterases". Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1021266.
Texto completoSpiegelman, Dan. "Exploring the fusion of metagenomic library and DNA microarray technologies". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98805.
Texto completoBorsetto, Chiara. "Study and exploitation of diverse soil environments for novel natural product discovery using metagenomic approaches". Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/97341/.
Texto completoAndrews, Tucker. "Ecology Of Composted Bedded Pack And Its Impact On The Udder Microbiome With An Emphasis On Mastitis Epidemiology". ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/989.
Texto completoNesme, Joseph. "Characterization of antibiotic resistance genes abundance and diversity in soil bacteria by metagenomic approaches : what is the dissemination potential of the soil resistome?" Phd thesis, Ecole Centrale de Lyon, 2014. http://tel.archives-ouvertes.fr/tel-01068359.
Texto completoWhissell, Gavin. "Merging metagenomic and microarray technologies to explore bacterial catabolic potential of Arctic soils". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98518.
Texto completoNOVELLO, GIORGIA. "Exploring the microbiota of Vitis vinifera cv. Pinot Noir in two vineyards with different soil management: metagenomic and metaproteomic analysis". Doctoral thesis, Università del Piemonte Orientale, 2017. http://hdl.handle.net/11579/86922.
Texto completoOrtiz-Ortiz, Marianyoly. "Kartchner Caverns: Habitat Scale Community Diversity and Function in a Carbonate Cave". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265356.
Texto completoGrisi, Teresa Cristina Soares de Lima. "Diversidade de Bacteria e Archaea do solo do Cariri paraibano e prospecção de celulases e xilanases em clones metagenômicos e isolados bacterianos". Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/342.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Soil samples of native pasture (site A) and of soil cultivated with grass Paspalum conjugatum, Bergius (site B) collected from Caatinga vegetation in the semi-arid region in Paraíba state (07°23‟27 S 36°31‟58 W) were utilized for constructing four metagenomic libraries, aiming the evaluation of microbial diversity through amplification of gene 16S rRNA of domains Bacteria and Archaea. The metagenomic DNAs were extracted by utilizing FastDNA® SPIN Kit for Soil (BIO 101), which were amplified by PCR, by using universal primers 27F / 1525R (Bacteria) and 20F / 958R (Archaea). The purified fragments were linked to vector pGEM Teasy and transformed by thermal shock in chemically competent Escherichia coli DH10B. Transformants were cultivated in LB/Ampicillin medium (100 μM/ml), IPTG (800 μg/mL) and XGal (80 μg/mL) at 37ºC/18-20 h. A selection of 250 clones of each library was performed, sequenced and after discarding the low quality sequences and chimerics, 64 and 68 sequences were obtained (Bacteria) and 89 and 141 sequences (Archaea) from soils of sites A and B, respectively, which were compared to public bank of data RDB and NCBI (similarity >95%). In site A the phylum Acidobacteria (48.4%) was the most abundant, followed by phyla Bacteroidetes (10.9%), Proteobacteria (10.9%), and Firmicutes (6.3%). In site B Proteobacteria (45.6%) was the most abundant, followed by Firmicutes (10.3%), Acidobacteria (8.8%), Bacterioidetes (7.3%); and also Cyanobacteria (1.5%) and Planctomycetes (1.5%) which were not found in site A. Among the sequences obtained, 23.4% (site A) and 25.0% (site B) were not classified (similarity <95%). In the domain Archaea the phyla found were Euryarchaeota (3.4 and 45.4%) and Crenarchaeota (2.2 and 3.5%), in sites A and B, respectively; it should be observed that 94.4% and 51.1% of the sequences were not classified (similarity <95%), between sites A and B, respectively. Larger diversity (Shannon‟s índex), richness (Chao 1), and distribution (equity index) of communities were observed at species level, in the phyla Bacteria and Archaea, in both sites. The metagenomic libraries 16S rRNA of Bacteria and Archaea, when compared by using the LIBSHUFF program, differed significantly (p<0.0001). The results of the present study showed the occurrence of a great diversity of bacteria and archaea in that semi-arid environment, with peculiar features of elevated temperature and hydric limitations, emphasizing the possibility of investigations on search of new genes and/or microbial isolates with biotechnological potential.
Amostras do solo da pastagem nativa (sítio A) e sob cultivo do capim marrequinho (Paspalum conjugatum, Bergius) (sítio B), coletadas na região semi-árida do bioma Caatinga, Paraíba, (07°23‟27 S 36°31‟58 O), foram utilizadas para construção de quatro bibliotecas de clones metagenômicos, para avaliação da diversidade microbiana pela amplificação do gene 16S rRNA dos domínios Bacteria e Archaea. Os DNA metagenômicos foram extraídos utilizando FastDNA® SPIN Kit for Soil (BIO 101), os quais foram amplificados por PCR utilizando primers universais, 27F / 1525R (Bacteria) e 20F / 958R (Archaea). Os fragmentos purificados foram ligados ao vetor pGEM Teasy e transformados por choque térmico em Escherichia coli DH10B quimicamente competente. Os transformantes foram cultivados em meio Agar LB/Ampicilina (100 μ/mL), IPTG (800 μg/μL) e XGal (80 μg/μL), a 37ºC/18-20 h. Foram selecionados 250 clones de cada biblioteca os quais foram sequenciados e após descarte das sequências de baixa qualidade e quiméricas, foram obtidas 64 e 68, 89 e 141 sequências para Bacteria e Archaea, nos solos dos sítios A e B, respectivamente, as quais foram comparadas em banco de dados públicos RDB e NCBI (≥95% de similaridade). No sítio A o filo Acidobacteria (48,4%) foi o mais abundante, seguido dos filos Bacteroidetes (10,9%), Proteobacteria (10,9%), e Firmicutes (6,3%). No sítio B Proteobacteria (45,6%) foi o de maior destaque, seguido de Firmicutes (10,3%), Acidobacteria (8,8%), Bacterioidetes (7,3%); e ainda Cyanobacteria (1,5%) e Planctomycetes (1,5%), que não foram encontrados no sítio A. Entre as sequências geradas, 23,4% (sítio A) e 25,0% (sítio B) não foram classificadas (similaridade <95%). No domínio Archaea foram encontrados os filos Euryarchaeota (3,4 e 45,4%) e Crenarchaeota (2,2 e 3,5%), nos sítios A e B, respectivamente; destacando-se que 94,4% e 51,1% das sequências não foram classificadas (similaridade <95%), entre os sítios A e B, respectivamente. Uma maior diversidade (índice de Shannon), riqueza (índice Chao 1) e distribuição (índice de equidade) das comunidades foram observadas no nível de espécies, tanto para Bacteria como para Archaea, nos dois sítios. As bibliotecas de clones metagenômicos 16S rRNA de Bacteria e Archaea, quando comparadas, utilizando-se o programa LIBSHUFF, diferiram significativamente (p<0,0001). Os resultados desse estudo mostraram a ocorrência de uma grande diversidade de bactérias e arqueas, nesse tipo de ambiente pouco estudado e com características peculiares de temperatura elevada e limitações hídricas, com possibilidade de busca de novos genes e/ou isolados microbianos, com potencial biotecnológico.
Libros sobre el tema "Soil metagenomic"
Accademia economico-agraria dei georgofili (Florence, Italy). Biodiversità e il metagenoma del terreno agrario. Firenze: Edizioni Polistampa, 2011.
Buscar texto completoJapan) MARCO Workshop (5th 2009 Tsukuba. Perspectives of Metagenomics in Agricultural Research: MARCO Workshop 5 : abstract : 6-7 October 2009, Tsukuba, Japan : Epochal Tsukuba (Tsukuba International Congress Center). Tsukuba, Japan: National Institute for Agro-Environmental Sciences, 2009.
Buscar texto completoSugitha, T. C. K., Asish K. Binodh, K. Ramasamy y U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Buscar texto completoSugitha, T. C. K., Asish K. Binodh, K. Ramasamy y U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Buscar texto completoSugitha, T. C. K., Asish K. Binodh, K. Ramasamy y U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Buscar texto completoSugitha, T. C. K., Asish K. Binodh, K. Ramasamy y U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Buscar texto completoSugitha, T. C. K., Asish K. Binodh, K. Ramasamy y U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Buscar texto completoTaberlet, Pierre, Aurélie Bonin, Lucie Zinger y Eric Coissac. Environmental DNA for functional diversity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0010.
Texto completoTaberlet, Pierre, Aurélie Bonin, Lucie Zinger y Eric Coissac. Introduction to environmental DNA (eDNA). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0001.
Texto completoKirchman, David L. Genomes and meta-omics for microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0005.
Texto completoCapítulos de libros sobre el tema "Soil metagenomic"
Kathi, Srujana. "Emerging Metagenomic Strategies for Assessing Xenobiotic Contaminated Sites". En Soil Biology, 89–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47744-2_7.
Texto completoDelmont, Tom O., Laure Franqueville, Samuel Jacquiod, Pascal Simonet y Timothy M. Vogel. "Soil Metagenomic Exploration of the Rare Biosphere". En Handbook of Molecular Microbial Ecology I, 287–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010518.ch33.
Texto completoUnno, Yusuke y Takuro Shinano. "Metagenomic Analysis of the Rhizosphere Soil Microbial Community". En Molecular Microbial Ecology of the Rhizosphere, 1099–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118297674.ch104.
Texto completoMisra, Sankalp, Vijay Kant Dixit, Swapnil Pandey, Shashank Kumar Mishra, Nikita Bisht y Puneet Singh Chauhan. "Exploration of Soil Resistome Through a Metagenomic Approach". En Antibacterial Drug Discovery to Combat MDR, 313–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9871-1_15.
Texto completoParsley, Larissa C., Chengcang Wu, David Mead, Robert M. Goodman y Mark R. Liles. "Soil Microbial DNA Purification Strategies for Multiple Metagenomic Applications". En Handbook of Molecular Microbial Ecology II, 109–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch11.
Texto completoWommack, K. Eric, Sharath Srinivasiah, Mark R. Liles, Jaysheel Bhavsar, Shellie Bench, Kurt E. Williamson y Shawn W. Polson. "Metagenomic Contrasts of Viruses in Soil and Aquatic Environments". En Handbook of Molecular Microbial Ecology II, 25–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch4.
Texto completoRajesh, T., J. Rajendhran, P. Lavanya Pushpam y P. Gunasekaran. "Methods in Metagenomic DNA, RNA, and Protein Isolation from Soil". En Handbook of Molecular Microbial Ecology II, 93–107. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch10.
Texto completoColagiero, Mariantonietta, Isabella Pentimone, Laura Cristina Rosso y Aurelio Ciancio. "A Metagenomic Study on the Effect of Aboveground Plant Cover on Soil Bacterial Diversity". En Soil Biological Communities and Ecosystem Resilience, 97–106. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63336-7_6.
Texto completoKielak, Anna M. y George A. Kowalchuk. "Targeting Major Soil-Borne Bacterial Lineages Using Large-Insert Metagenomic Approaches". En Handbook of Molecular Microbial Ecology II, 135–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch14.
Texto completoPershina, E. V., E. E. Andronov, A. G. Pinaev y N. A. Provorov. "Recent Advances and Perspectives in Metagenomic Studies of Soil Microbial Communities". En Management of Microbial Resources in the Environment, 141–66. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5931-2_7.
Texto completoActas de conferencias sobre el tema "Soil metagenomic"
Melnichuk, T. N., A. Yu Egovtseva, S. F. Abdurashitov, E. R. Abdurashytova, E. N. Turin, V. V. Gorelova y A. A. Zubochenko. "Microbiocenosis of southern chernozem under the influence of no-till". En CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-114.
Texto completoTereshchenko, Natalya, Tatiana Zyubanova, Elena Akimova y Oksana Minaeva. "The assessment of soil suitability for reproduction of healthy seed potatoes based on metagenomic analysis of the soil microbial community and the level of soil suppressive activity". En MODERN SYNTHETIC METHODOLOGIES FOR CREATING DRUGS AND FUNCTIONAL MATERIALS (MOSM2020): PROCEEDINGS OF THE IV INTERNATIONAL CONFERENCE. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069257.
Texto completoTaura, Usman, Sara Al-Araimi, Saif Al-Bahry, Yahya Al-Wahaibi y Lujain Al-Rashdi. "Isolation of Autochthonous Consortium for the Bioremediation of Oil Contaminated Produced Water". En SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/212024-ms.
Texto completoKawulok, Jolanta y Michal Kawulok. "Environmental Metagenome Classification for Soil-based Forensic Analysis". En 9th International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006659301820187.
Texto completoDzombak, Rebecca M. y Nathan D. Sheldon. "USING PAIRED GEOCHEMISTRY AND METAGENOMICS TO EXPLORE SOIL CRUSTS AS ANCIENT TERRESTRIAL ANALOGUES". En 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-347938.
Texto completoRahman, Jessica S., Jinyan Li, Juanying Xie, Shoshana Fogelman y Michael Blumenstein. "Connectivity Based Method for Clustering Microbial Communities from Metagenomics Data of Water and Soil Samples". En 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489220.
Texto completo"Fungal metagenome of Chernevaya Taiga soils: taxonomic composition, differential abundance and factors related to plant gigantism". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-167.
Texto completoInformes sobre el tema "Soil metagenomic"
House, Geoffrey Lehman, Laverne A. Gallegos-Graves y Patrick Sam Guy Chain. Overview of the Soil Metagenomics and Carbon Cycling SFA Fungal Collection. Office of Scientific and Technical Information (OSTI), noviembre de 2018. http://dx.doi.org/10.2172/1483488.
Texto completoCrowley, David E., Dror Minz y Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, julio de 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Texto completoZhou, Jizhong y Liyou Wu. From Structure to Functions: Metagenomics-Enabled Predictive Understanding of Soil Microbial Feedbacks to Climate Change. Office of Scientific and Technical Information (OSTI), noviembre de 2019. http://dx.doi.org/10.2172/1574023.
Texto completoMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson y Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, enero de 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Texto completo